
The enriched Curry-Howard-Lambek
correspondence

Abstract—In this work, we embark on a program to develop
type theory with semantics in enriched categories. Category
theory has gained a lot of flexibility and expressive power by
enlarging its domain of study to include enriched categories
(which include higher categories) – these are like categories
except that the homs live not in the category of sets but in some
specified base category. On the other hand, the Curry-Howard-
Lambek correspondence is the basis for much of modern type
theory and categorical logic: it connects logic to the simply typed
lambda calculus which then is seen as the internal language for
cartesian closed categories. Here, we extend the Curry-Howard-
Lambek correspondence to develop an enriched simply typed
lambda calculus which we show is an internal language for en-
riched cartesian closed categories, and we exhibit a corresponding
logic. We are guided by intuition from our most basic nontrivial
example – fuzzy logic and set theory – and we argue that the
logic that we obtain in this case is a compelling alternative to
the intuitionistic fuzzy logics that exist in the literature.

I. INTRODUCTION

A. Motivation

In this work, we execute the first step in a program to
develop type theory with semantics in enriched categories [16].

Motivation from category theory: An enriched category
has, like an ordinary category, a collection of objects, but its
homs are not sets but rather objects in some other category,
called the base of enrichment. Many mathematical objects
naturally form an enriched category: for example, the collec-
tion of homomorphisms between two vector spaces could be
considered as a set, but it is much more useful to recognize
that it forms a vector space itself.

It is difficult to overstate the importance of enriched cat-
egory theory within category theory itself. Indeed, to study
categories themselves, one needs to work in the 2-category –
that is, category-enriched category – of categories. Many ap-
proaches to higher category theory use enriched category the-
ory (and the other approaches use closely related techniques).
Classically, topologically enriched categories, simplicial cat-
egories, dg-categories, linear categories, abelian categories,
etc. are all important objects of study in algebraic geometry
and topology and are enriched categories; preordered sets and
metric spaces can also be seen as enriched categories.

Many of these are directly relevant to theoretical computer
science as the semantics for homotopy, cubical, directed, and
simplicial type theories. One needs only look at recent pub-
lications in category theory to see other relevant applications
of enriched category theory: a selection of such papers from
the last year includes applications in synthetic domain theory
[21], categorical probability theory [17, 24], linear logic [25],

differential categories [18], quantum programming languages
[28], reversible programming languages [6], and information
dynamics [11]. Thus, developing an internal language for
enriched categories that could form the basis of a computer
proof assistant is a well-motivated problem.

Motivation from computer science: Besides the applica-
tions of enriched category theory in computer science above,
we see two main motivations from computer science.

First, we think that giving enriched categorical semantics
can clarify some features of functional programming lan-
guages. When understanding what a type theory or functional
programming language ‘means’ – in either a technical or intu-
itive sense – there is a (very natural) tendency to conflate the
collection of the terms of a type T with the type T itself. Under
usual categorical semantics, this corresponds to conflating the
set of morphisms ∗ → T with the type T itself (or in a
dependently typed setting, sections of Γ.T → Γ with the type
T in context Γ). Thus when working with, for instance, the
simply typed lambda calculus, one can feel that one is working
directly with sets, even though they are just working with
the internal language of (cartesian closed) categories enriched
in sets. We concede that this feeling is justified by the fact
that Set is itself such a category, but consider for instance
the polymorphic term undefined of Haskell. Justified by
semantics of related languages in categories such as dcpos,
this feature has been added into Haskell to, roughly, make
the types of Haskell behave more like dcpos. But to be more
precise, by doing this we are not making the types themselves
more like dcpos so much as the sets of terms of each type.
Actually, it is appropriate to not view the collections of terms
as sets anymore, but rather as pointed sets. Thus, from this
perspective it is more appropriate to take semantics of a
language with a polymorphic undefined term in pointed-
set-enriched categories rather than in (set-enriched) categories,
interpreting undefined as the point in each set. We are sure
that the difference between types and their sets of elements is
well understood by most users of type theories and functional
programming languages, but we think for the reason described
here that an enriched categorical perspective on semantics of
programming languages is a natural one. See Examples 4, 7,
12.

Second, we see the development of a mathematical theory of
the modal and similar (e.g., quantitative, directed) type theories
that are currently proliferating (see e.g. [23, 19, 4, 22, 13, 14])
as one of the most important problems in current type theory
research. We see the core contribution of such type theories to
be the inclusion of annotations in the syntax that govern how



terms can be used. In this work, we also enrich the simply
typed lambda calculus with term annotations, but in a different
way than in the aforementioned works (only to the right of the
turnstile) and with different semantics (in enriched categories).
We thus see this work as illuminating yet another corner in the
space of possibilities for type theories with such annotations.
See Example 17 for further discussion.

Motivation from logic: This work started as an attempt to
understand a type theory with semantics in fuzzy sets [12],
as fuzzy sets seemed to be a reasonably small first step away
from usual set-based semantics to more generally enriched
ones. In the end, the theory that we present here is much
more general than the one for fuzzy sets, but this remains our
favorite example. In particular, we present a new intuitionistic
fuzzy logic with the advantage over others in the literature in
that it comes with a Curry-Howard-Lambek correspondence.

B. Contributions

In this work, we present what we call the W-enriched
simply typed lambda calculus (Definition 3). This has sound
(Theorem 1) and complete (Theorem 2) semantics in cartesian
closed V-categories (Definition 5) where V is a W-relative
monoidal category (Definition 4) and W is a monoidal cate-
gory.

When W is a monoidal poset W, we also present W-natural
deduction (Definition 6) with sound and complete semantics
in cartesian closed V-categories (Theorem 5) where V is a
W-relative monoidal poset. We show that this has a Curry-
Howard correspondence with the W-enriched simply typed
lambda calculus (Theorem 4).

When W and W are the trivial monoidal category, our def-
initions and results reduce to the classical case: we obtain the
simply typed lambda calculus with its semantics in cartesian
closed categories and natural deduction with its Curry-Howard
correspondence to the simply typed lambda calculus.

We give many examples of categories that fulfill the hy-
potheses of our results.

In particular, we analyze to what extent the syntax is sound
and complete when we restrict the class of models to those
relevant in the fuzzy case. That is, we show to what extent
the W-enriched simply typed lambda calculus has a sound and
complete interpretation in cartesian closed Set(W)-categories
(Theorem 3) (where Set(W) is the category of fuzzy sets), and
to what extent W-natural deduction has a sound and complete
interpretation in cartesian closed W0-categories (Theorem 6)
(where W0 is W freely adjoined with an absorbing, bottom
element). We argue that W-natural deduction should be viewed
as an intuitionistic fuzzy logic, the only one in the literature
that is part of a Curry-Howard-Lambek correspondence.

C. Related work

We do not know of a type theory specifically designed to
have semantics in enriched categories.

Fiore [9] gives an interpretation of FPC (a type theory
with sums, products, exponentials, and recursive types) in
CPO-categories. We obtain as an instance of our results

a simply typed calculus with semantics in CPO-categories
(Example 18), but we do not study recursion in this work.

A dependent type theory for bicategories was developed in
[2]. Though bicategories are not exactly enriched categories,
if one restricts to 2-categories, then that type theory could be
seen as one for category-enriched categories. We do obtain as
another instance of our results a calculus with semantics in
2-categories (Example 9), but our syntax is simply typed and
theirs is dependently typed.

There are superficial, syntactic similarities with modal and
quantitative type theories, as discussed above, and less super-
ficial similarities as explained in Example 17. We hope to give
a formal, semantic comparison of the enriched type theory that
we develop with modal and quantitative type theories in future
work.

Lastly, we give a careful comparison of our W-natural
deduction with the other intuitionistic fuzzy logics in the
literature in Section IV-C.

II. SYNTAX

Our syntax starts with a monoidal poset (defined in the
rules below) W of weights. If W = 1, we obtain the
simply typed lambda calculus [7]. Thus, we view this as a
family of extensions of the simply typed lambda calculus,
parametrized by W, and call it the W-enriched simply typed
lambda calculus.

It is possible to generalize from a monoidal poset to a
monoidal category W, but we first give the rules in the less
general case, since they are simpler. We give the alternate rules
for a monoidal category in Section II-G below.

A. Basic rules pertaining to W

We first fix a monoidal poset W. Monoidal poset is defined
formally by the rules at the end of this subsection, but it can
alternately defined as a posetal, monoidal category. The first
three judgments of our calculus will be the following.

w wt w = w′ wt w ≤ w′ wt

The first judgment w wt is read ‘w is a weight’ and holds
when w ∈ W. The second holds when w = w′, and the third
holds when w ≤ w′ (provided w,w′ ∈ W).

Instead of starting with a monoidal poset W external to
the calculus, one could take the alternate approach W as
the first layer of this calculus. That is, we could give the
following rules, which constitute the definition of monoidal
poset, together with constant symbols adding generators and
axioms asserting relations. In this work, we will use the first
approach (assuming an external monoidal poset W) because
our results hold for any such W, not just finitely axiomatizable
ones. However in an implementation, one might prefer to use
the second approach.

W-REFL
w wt

w ≤ w wt

W-TRANS
u ≤ v wt v ≤ w wt

u ≤ w wt



W-ASYM
v ≤ w wt w ≤ v wt

v = w wt

W-PROD
v, w wt
vw wt

W-ID

1 wt

W-IDL
w wt

1w = w wt

W-IDR
w wt

w = w1 wt

W-ASS
u, v, w wt

u(vw) = (uv)w wt

W-FUNC
t ≤ u wt v ≤ w wt

tv ≤ uq wt

B. Structural rules

We are defining a generalized simply typed lambda calculus,
so in addition to the weight judgments we have the usual
judgments (usual, except that the term judgment includes a
weight). First, we have the usual judgments pertaining to types
and contexts.

T type T = T ′ type Γ ctx Γ = Γ′ ctx

Our term judgments now include a weight: for a context Γ,
a type T , and a weight w, we have the following judgment
(read as ‘t is a term with weight w of type T in context Γ’)
together with a corresponding equality judgment.

Γ ⊢ t :w T Γ ⊢ t = t′ :w T

For the four equality judgments that we have introduced,
we refrain from writing the rules that state that they are
congruences, but we certainly assume them.

The context formation rules are exactly the same as in the
usual simply typed lambda calculus.

C-EMP

♢ ctx

C-EXT
Γ ctx T type

Γ, x : T ctx

We have the following structural rules. Note that the variable
(VAR) and substitution (SUBST) rules use the weights in a
nontrivial way, unlike weakening (WK).

VAR
Γ, x : T,∆ ctx

Γ, x : T,∆ ⊢ x :1 T

WK
Γ,∆ ⊢ t :w T S type

Γ, s : S,∆ ⊢ t :w T

SUBST
Γ, x : S,∆ ⊢ t :w T Γ ⊢ s :v S

Γ,∆ ⊢ t[s/x] :vw T

We assume that this substitution, as an implicit substitution,
satisfies the usual rules that usually taken to be self-evident:
that t[x/x] = t, etc.

We also have a weakening rule for weights.

W-WK
Γ ⊢ t :w T v ≤ w wt

Γ ⊢ t :v T

C. Intuition: fuzzy sets

We pause here to preview a bit of intuition coming from
the semantics (see Section III). Whereas the semantics of
the simply typed lambda calculus lie in (cartesian closed)
categories – that is, categories enriched in sets – our semantics
will lie in enriched categories, and the illustrating semantics
will lie in categories enriched in fuzzy sets.

Definition 1: For a monoidal poset W, a W-fuzzy set (or
simply, fuzzy set) is a pair (S, f) where S is a set and f is
a function S → W [12]. A morphism α : (S, f) → (T, g) of
W-fuzzy sets is a function α : S → T such that f(x) ≤ gα(x)
for all x ∈ S. We denote resulting category of W-fuzzy sets
by Set(W).

This category has a monoidal structure whose unit is (∗, 1),
the singleton with the constant function at 1 ∈ W, and whose
tensor is given by (S, f)⊗ (T, g) := (S×T, λx.f(x)g(x)). ◀

Example 1: Set(1) is isomorphic to Set. Set(I) is the
category of fuzzy sets in the sense of Zadeh [29]. ◀

Thus, categories enriched in W-fuzzy sets are equivalently
categories that have additional structure: each morphism is
equipped with ‘weight’ in W (such that each identity mor-
phism has weight 1 and the weight of g ◦ f is the product of
the weights of f and g).

We will show in Theorem 1 that there is an interpretation
of the following rules in categories enriched in W-fuzzy sets.

There, a judgment Γ ⊢ t :w T will be interpreted to mean
that there is a morphism from Γ to T with weight at least w.

If we take W to be the trivial monoidal poset 1 (i.e., the
singleton {1} with its unique ordering and multiplication), we
obtain exactly the simply typed lambda calculus with an extra,
meaningless piece of syntax that can be erased: when a colon
appears to the right of turnstile, it will appear not as ‘:’ but
as ‘:1’.

If we take W to be the booleans B (i.e., {0, 1} with the order
corresponding to implication and multiplication corresponding
to conjunction), we also obtain a calculus similar to the simply
typed lambda calculus. The judgment Γ ⊢ t :1 T is then
interpreted as a morphism from Γ to T with weight 1, and
a judgment Γ ⊢ t :0 T is interpreted as a morphism Γ to T
with any weight. Thus, the judgment Γ ⊢ t :1 T carries more
information than Γ ⊢ t :0 T . One might want to regard the
former judgment as meaning that there is a morphism Γ → T
and the latter as carrying no information; one could formalize
this intuition in part by showing that our B-enriched simply
typed lambda calculus is conservative over the simply typed
lambda calculus.

If we take the fixed monoidal poset to be the unit interval
I (i.e., the subset [0, 1] of the real numbers with the order and
multiplication inherited from them; note the natural inclusion
B ↪→ I), then a judgment Γ ⊢ t :w T is interpreted as a
morphism from Γ to T of weight w. We might understand this
as asserting with some non-binary confidence w that there is
a morphism from Γ to T .



D. Rules for weightings

Going from category theory to enriched category theory,
products generalize to weighted products. However, to take
a weighted binary product of two objects in an enriched
category, one can take ‘weighted unary products’ (which in
the syntax we will call the weighting of a type T by w) of
each object individually and then take an (unweighted) binary
product. We axiomatize that approach here, first giving the
weightings of types.

WTG-FORM
T type w wt

Tw type

WTG-INTRO
Γ ⊢ t :vw T w wt

Γ ⊢ tw :v Tw

WTG-ELIM
Γ ⊢ t :v Tw

Γ ⊢ t\w/ :vw T

WTG-β
Γ ⊢ t :vw T w wt

Γ ⊢ t = tw\w/ :vw T

WTG-η
Γ ⊢ t :v Tw

Γ ⊢ t = t\w/w :v Tw

Note in the above rules that \w/ is not a new weight; rather
t\w/ is a new term symbol. Also note that tw\w/ could have
been more carefully written as (tw)\w/, but we write it without
parentheses for readability (similarly for t\w/w).

Example 2: One can observe that the rules governing T 1

above present a syntactic isomorphism between T and T 1.
Thus, when W = 1 and we compare this with the original
simply typed lambda calculus, we find that the types are
duplicated, but in a nonessential way.

If there is a zero (i.e., initial and absorbing) element 0 ∈ W
(e.g., in B and I), then the terms of T 0 correspond to terms
of T of weight 0.

For an arbitrary w, the terms of weight 1 in Tw correspond
to terms of weight w in T , so we can understand Tw as a
scaling of T by w. ◀

E. Binary products

Now, we give the rules for products of types. The rules that
contain a parameter i stand for two rules: one for i = 1 and
one for i = 2.

×-FORM

T1 type T2 type
T1 × T2 type

×-INTRO

Γ ⊢ t1 :w T1 Γ ⊢ t2 :w T2

Γ ⊢ ⟨t1, t2⟩ :w T1 × T2

×-ELIM

Γ ⊢ p :w T1 × T2

Γ ⊢ πip :w Ti

×-β
Γ ⊢ t1 :w T1 Γ ⊢ t2 :w T2

Γ ⊢ πi⟨t1, t2⟩ = ti :w Ti

×-η
Γ ⊢ p :w T1 × T2

Γ ⊢ ⟨π1p, π2p⟩ = p :w T1 × T2

Note that when W = 1, these are the rules for binary
products in the simply typed lambda calculus (with some
erasable subscripts). More generally, for each weight w, the

rules can be seen as describing usual products of ‘subtypes’
of terms of weight w. We might say that these products are
taken ‘weightwise’.

Observe that if W has binary meets ∧, then using W-WK,
the rules ×-INTRO and ×-β are equivalent to the following
rules.

×-INTRO-ALT

Γ ⊢ t1 :w1
T1 Γ ⊢ t2 :w2

T2

Γ ⊢ ⟨t1, t2⟩ :w1∧w2 T1 × T2

×-β-ALT

Γ ⊢ t1 :w1
T1 Γ ⊢ t2 :w2

T2

πi⟨t1, t2⟩ = ti :w1∧w2 : Ti

F. Function types

Now we give the rules for function types, which are also
straightforward.

→-FORM
S type T type

S → T type

→-INTRO
Γ, x : S ⊢ t :w T

Γ ⊢ λx.t :w S → T

→-ELIM
Γ ⊢ f :w S → T

Γ, x : S ⊢ fx :w T

→-β
Γ, x : S ⊢ t :w T

Γ, x : S ⊢ (λx.t)x = t :w T

→-η
Γ ⊢ f :w S → T

Γ ⊢ λx.fx = f :w S → T

Again, when W = 1, these are the rules for function types in
the simply typed lambda calculus. More generally, these rules
can be seen as saying that function types are taken weightwise.

Definition 2: For a monoidal poset W, we call the rules C-
EMP, C-EXT, VAR, WK, SUBST, W-WK, WTG-FORM, WTG-
INTRO, WTG-ELIM, WTG-β, WTG-η, ×-FORM, ×-INTRO,
×-ELIM, ×-β, ×-η, →-FORM, →-INTRO, →-ELIM, →-β,
and →-η the W-enriched simply typed lambda calculus. ◀

G. Monoidal categories of weights

We have so far considered a syntax that starts with a
monoidal poset W. We can generalize our calculus to one
in which that starts with W .

Notation 1: We use the symbols W and W throughout this
work to help distinguish when we are talking about the general
case (W) or the posetal case (W), but note that every monoidal
poset is a monoidal category. ◀

For the analogues of the judgments and rules in Sec-
tion II-A, we remove the judgment w ≤ v wt, and we add
the following judgments for any two weights w, v.

f : w ⇒ v f = g : w ⇒ v

If we consider the monoidal category W to be external
to our calculus, then we say that f : W ⇒ v means
f ∈ homW(w, v) and f = g : w ⇒ v means that f = g
(provided f, g : w ⇒ v).



Just as in Section II-A, we could instead give rules that
axiomatize monoidal categories together with generating con-
stants and relations. The rules that define monoidal categories
would start with the following rules.

W -REFL
w wt

idw : w ⇒ w

W -TRANS
f : u ⇒ v g : v ⇒ w

g ◦ f : u ⇒ w wt

W -PROD
v, w wt
vw wt

W -ID

1 wt

W -IDL
w wt

λw : 1w ∼= w

W -IDR
w wt

ρw : w1 ∼= w

W -ASS
u, v, w wt

αu,v,w : u(vw) ∼= (uv)w

W -FUNC
f : t ⇒ u g : v ⇒ w

fg : tv ⇒ uw

In the above, the rules with conclusions of the form f : A ∼= B
stand for four rules with the same hypotheses as the original:
one with conclusion f : A → B, one with conclusion f−1 :
B → A, one with conclusion f ◦ f−1 = idB : B → B, one
with conclusion f−1 ◦ f = idA : A → A. The above rules
additionally need to be accompanied by rules asserting (1)
the axioms of a category (i.e., asserting that id provides left
and right units for ◦ and that ◦ is associative), (2) that ⊗ is
functorial (i.e., respects id and ◦), (3) that the isomorphisms
λ, ρ, and α are natural, (4) that the triangle identity holds,
and (5) that the pentagon identity holds. Giving these rules
is routine though tedious (i.e., it consists just of writing the
rest of the definition of monoidal category in the above form),
and since this is not the focus of this work, we refrain from
writing them explicitly.

Independently of how we obtain W , we also need to replace
the rule W-WK with one more suited for W . In W-WK,
we gave the same name to the terms in the hypothesis and
conclusion. This is relatively harmless since we assume that
the weights form a poset. If the weights form a non-posetal
category (or perhaps if we want to be more careful in an
implementation), then we should rather give the resulting term
a name, as below.

W -WK
Γ ⊢ t :w T f : v ⇒ w

Γ ⊢ f(t) :v T

This needs to be accompanied by rules asserting that this is
functorial in f , which we do give explicitly here.

W -WK-ID
Γ ⊢ t :w T

Γ ⊢ idw(t) = t :w T

W -WK-COMP
Γ ⊢ t :w T f : v ⇒ w g : u ⇒ v

Γ ⊢ g(f(t)) = (f ◦ g)(t) :u T

Definition 3: Given a monoidal category W, we call
the rules C-EMP, C-EXT, VAR, WK, SUBST, W -WK,
WTG-FORM, WTG-INTRO, WTG-ELIM, WTG-β, WTG-η,

×-FORM, ×-INTRO, ×-ELIM, ×-β, ×-η, →-FORM, →-
INTRO, →-ELIM, →-β, and →-η the W-enriched simply
typed lambda calculus. ◀

III. SEMANTICS

In this section, we describe the semantics of the W-
enriched simply typed lambda calculus. We show that it is
an internal language of cartesian closed categories enriched
in W-relative monoidal categories in the sense that there is a
sound (Theorem 1) and complete (Theorem 2) interpretation.

A. Definitions and examples

Definition 4: Consider a monoidal category (W, 1, ·). Say
that a monoidal category (V, I,⊗) together with a strong
monoidal functor ι : W → V is a W-relative monoidal
category. ◀

Strong monoidal means that the functor preserves the
monoidal structure up to isomorphism. Though we explain
the pertinent aspects of the theory of enriched categories, for
a complete introduction, see [16].

In examples, W will often be posetal (in which case we
will write it as W), and ι will usually be the inclusion of a
subcategory.

Example 3: Consider the category of sets with its cartesian
monoidal structure (Set, ∗,×), and let W be the subcategory
consisting just of the singleton ∗. ◀

Example 4: Consider the category of pointed sets with the
smash product, and let W be the subcategory consisting just
of the singleton ∗. ◀

Example 5: More generally, for a monoidal poset
W, consider the monoidal category of W-fuzzy sets
(Set(W), (∗, 1),⊗). Observe that W appears as a submonoidal
category of Set(W), where the inclusion W ↪→ Set(W) takes
w 7→ (∗, w).

When W = 1, we recover (up to isomorphism) the previous
example in Set. ◀

We think of the objects of W as ‘shapes’ with which we
‘probe’ the objects of V: that is, for an object w ∈ W and
an object V ∈ V , we will focus on the information carried
by homV(ιw, V ). In other words, in the categories V that we
study in this work, one is interested in understanding certain
features of its objects where by ‘features’ we mean functors
F : V → Set, and these functors are representable by ιw for
some w.

Example 6 (continuing Example 3): By probing sets with
the singleton ∗, we extract their elements. ◀

Example 7 (continuing Example 4): By probing a pointed
set with the point ∗, we always pick out its point. This
corresponds to the semantics of undefined suggested in
the introduction. ◀

Example 8 (continuing Example 5): By probing a W-fuzzy
set with an object of the form (∗, w) – that is, by taking the
hom-set homSet(W)((∗, w), (S, f)) – we obtain the set of all
elements of x ∈ S such that w ≤ f(x) – that is, the set of all
elements with weight at least w. ◀



Example 9: Consider a closed monoidal category (V,⊗, I)
with an interval object: that is, an object J together with two
morphisms 0, 1 : I → J . Examples include the category of
categories with the walking arrow, any convenient category of
topological spaces with the unit interval [0, 1], the category
of simplicial sets with ∆1, and any of the categories of
cubical sets with □1. Let J denote the submonoidal category
generated by 0, 1 : I → J ; denote its objects as Jn (where
J0 := I). Then one can understand an object V by calculating
homV(J

0, V ) (the set of ‘points’ of V ), homV(J, V ) (the set
of ‘intervals’ of V ),homV(J

2, V ) (the set of ‘squares’ of V ),
etc. This is a very useful set of tools when working in such
categories, and in this work we formalize it. ◀

Example 10: Consider a small, monoidal category (W, 1, ·).
Day convolution [8] produces a closed monoidal structure on
the category Ŵ of presheaves on W such that the Yoneda
embeddingょ : W ↪→ Ŵ is strong monoidal.

The main approach to working with presheaves probes
them with representables: i.e., one studies a presheaf P by
calculating homV(ょ(w), P ) for each w ∈ W . ◀

Example 11: The category CPO of complete partial orders
and continuous functions is cartesian closed as is the category
DCPO of directed complete partial orders [1]. In either of
these categories, one can extract the underling set of an
object X by considering hom(F∗, X) where F∗ denotes
the free object on one generator, or ω-chains by considering
hom(ω,X) where ω denotes the free omega chain, etc. ◀
W-relative monoidal categories appear in this work as the

base of enrichment of the categories which will interpret the
W-enriched simply typed lambda calculus. If V is monoidal
closed, then it can be seen as a category enriched in itself [16,
§ 1.6], and these will serve as our most basic examples of
enriched categories. As stated, the examples given above are
cartesian or monoidal closed, with the exception of Set(W)
(in generality).

Example 12 (continuing Example 4): The smash monoidal
structure on pointed sets is closed. ◀

Example 13 (continuing Example 5): If the monoidal poset
W is complete, then so is Set(W): the product

∏
i(Si, fi) is

given by (
∏

i Si, λx. ∧i fi(x)).
If the monoidal poset W is also closed, then so is Set(W).

The exponential (S, f)(T,g) is given by (ST , λα. ∧t∈T

fα(t)g(t)). ◀
Interesting examples of V-enriched categories other than V

itself include the following.
Example 14: Suppose that V is monoidal closed and

complete. Given a set S, the collection of functions
S → ob(V) naturally inherits a V-category structure, where
homS→ob(V)(f, g) :=

∏
x∈S homV(fx, gx) (where homV

denotes the internal hom of V given by its closed structure).
This is (with some assumptions) a consequence of the more

general fact that for any V-enriched category C, there is a
presheaf V-category Ĉ := [Cop,V] [16, § 2.2]. ◀

Example 15: Simplicially enriched categories (categories
enriched in simplicial sets) are extremely important in modern
homotopy theory, as a subcategory of these constitutes one

model of the theory of (∞, 1)-categories. When studying
these, it is common to calculate the points, the intervals, etc. in
each hom-space, as they correspond to the 1-cells, the 2-cells,
etc. in the corresponding (∞, 1)-categories. ◀

Example 16: Similarly, categories enriched in the category
of categories are 2-categories (or to be general, categories
enriched in n-categories are n+1-categories). There, the points
are the 1-cells, the intervals are the 2-cells, etc. ◀

Example 17: We obtain another interesting perspective on
directed type theory in the following way. They (e.g., [23,
22, 14]) often come with some number of modes, usually at
least −,+, which correspond to contravariant functors and
covariant functors, respectively, of (higher) categories. There
is a group structure on Z2 := {+,−} where + is the identity
and −2 = +. Considered as a discrete poset, this is a monoidal
one.

Then consider the following Set(Z2)-category of categories.
Let the objects be categories, and let hom(C,D) be the
collection of all contravariant functors and covariant functors
from C → D. There is a function hom(C,D) → Z2 that
indicates the variance of each functor. This is indeed a
Set(Z2)-category: the (covariant) identity functor C → C gives
us a morphism (∗,+) → hom(C, C), and for two functors
F ∈ hom(C,D) and G ∈ hom(C,D) with variances v, w
respectively, the composite G ◦ F is a functor with variance
vw, giving composition in this Set(Z2)-category.

While − corresponds to the operation C 7→ Cop, and
+ corresponds to C 7→ C, other modalities, such as those
corresponding to C 7→ Ccore and the localization of a category
(by all of its morphisms) are often also considered. With these,
one gets a larger, non-discrete monoidal poset (that is cartesian
closed), and this approach extends to that setting.

We expect this perspective to also extend to the settings of
other modal logics, and we leave it to future work to concretely
compare the perspective developed here based on enriched
categories, and others: for instance the ones based on a 2-
category of modes explored in [19, 13]. ◀

Example 18 (continuing Example 11): CPO-categories
were used by Fiore to develop axiomatic domain theory [9].
CPO-categories and DCPO-categories have also appeared
recently in the literature to develop reversible functional pro-
gramming languages (see e.g. [15, 6]). ◀

B. Soundness

In the next subsections, we prove the following theorem.
Theorem 1 (Enriched Lambek interpretation): Consider a

monoidal category W and a W-relative monoidal category V
with finite products and which is powered by W . There is an
interpretation of the W-enriched simply typed lambda calculus
in any cartesian closed V-category.

If W is a monoidal poset W, this restricts to an interpreta-
tion of the W-enriched simply typed lambda calculus in any
cartesian closed V-category. ◀

Proof: See Lemmas 1,2,3,4.
We define the adjective ‘cartesian closed’ as the following.

The concept of powered and the constituents of cartesian



closed – finite products, unary products weighted by W , and
exponentials – will be defined in the corresponding subsections
that follow.

Definition 5: We call a V-category cartesian closed if it
has all finite products, unary products weighted by W , and
exponentials. ◀

Example 19: Recall that all examples for V that we have
considered are monoidal closed (which implies powered by W)
and have all finite products (except Set(W) in general – for
these we need to assume that W is closed and has all finite
meets). Thus, these meet our hypotheses on the W-relative
monoidal category of Theorem 1.

We will not attempt to enumerate the cartesian closed V-
categories, but just as Set is the primordial cartesian closed
Set-category, each V itself that is monoidal closed (ensuring
unary weighted products and exponentials) and has all finite
products also meets our hypotheses on the V-category of
Theorem 1. ◀

Example 20 (continuing Example 3): When V is Set and W
is the subcategory consisting just of the singleton, we recover
from Theorem 1 the usual interpretation of the simply typed
lambda calculus in cartesian closed categories. ◀

Remark 1: There are two categorical approaches to in-
terpreting the simply typed lambda calculus. In the more
common one, contexts T1, ..., Tn are interpreted as products∏n

i=1[Ti], so the interpreting category needs to have all finite
products. This is not much of an assumption, since the binary
product type formers require the category to all non-trivial
finite products anyway.

There is another approach, more faithful to the syntax (well
explicated in [26]). In that approach, the syntax is interpreted
in multicategories and this extra structure is used to interpret
contexts.

We view the latter as a better approach that gives a clearer
comparison between the syntax and the semantics, but we
follow the former in this short work. ◀

Thus, for the rest of this section, fix a W-relative monoidal
category V with finite products and a V-category C with finite
products. Note that all V we gave above in examples have finite
products (with the exception of Set(W) – there we need W
to have finite products).

C. Interpretation of structural rules

We interpret Γ ctx and T type as objects [Γ] and [T ] in C. As
with the usual simply typed lambda calculus, [⋄] is interpreted
as the terminal object and for objects [Γ] and [T ], we take
[Γ, x : T ] := [Γ]× [T ].

Notation 2: Because our interpretation of terms will use
hom-sets of the form homV(ιw,homC(X,Y )), we introduce
a notation for this (on the semantic side). Let X →w Y denote
the set homV(ιw,homC(X,Y )). We write f : X →w Y for
f ∈ homV(ιw,homC(X,Y )).

The identity on an object X in C is given by a morphism
idX ∈ homV(I, homC(X,Y )) in V . We can now write this as
idX : X →1 X .

Similarly, composition is given as a morphism ◦X,Y,Z :
homC(X,Y )⊗homC(Y,Z) → homC(X,Y ) in V . Morphisms
f : X →v Y and g : Y →w Z can then be combined to
give a morphism ι(vw) → homC(X,Y )⊗ homC(Y,Z) in V;
composing with ◦X,Y,Z then produces a morphism that we
will write as g ◦ f : X →vw Z. ◀

Example 21 (continuing Example 17): We now obtain a
pleasing notation with a concrete mathematical meaning for
covariant and contravariant functors. We write C →− D for
contravariant functors and C →+ D for covariant functors. ◀

From here on, we will stop writing the interpretation func-
tion [ ] for readability.

We interpret a judgment Γ ⊢ t :w T as t : Γ →w T .
Given a product Γ × T × ∆, we interpret VAR as the

morphism Γ×T ×∆ →1 T given by the following derivation.
For an arbitrary product A×B in C, observe that we have a
projection π1 : A×B →1 A given as the composition

I
idA×B−−−−→ homC(A×B,A×B)
∼= homC(A×B,A)× homC(A×B,B)

→ homC(A×B,A)

where the first morphism is the identity on A × B, the
isomorphism is an instantiation of the universal property of
A × B, and the last morphism is the product projection in
V . Similarly, we have a projection π2 : A × B →1 B and a
projection πT : Γ× T ×∆ →1 T .

Given an element t : Γ×∆ →w T and a type S, we interpret
WK as the morphism t : Γ × S × ∆ →w T constructed in
the following way. As above, we have a product projection
πΓ×∆ : Γ × S ×∆ →1 Γ ×∆. We postcompose this with t
to get a morphism Γ× S ×∆ →w T .

Given morphisms t : Γ×S×∆ →w T and s : Γ →v S, we
interpret SUBST as the morphism t[s/x] : Γ×∆ →vw T given
by the following construction. First, analogous to the product
projections described above, there is a morphism δΓ × id∆ :
Γ ×∆ →1 Γ × Γ ×∆. Similarly, we can construct from s a
morphism idΓ × s × id∆ : Γ × Γ ×∆ →v Γ × S ×∆. Now
we compose δΓ × id∆ with idΓ × s × id∆ and t to obtain a
morphism t[s/x] : Γ×∆ →vw T .

To interpret W -WK, we start with a morphism t : Γ →w T
and a morphism f : v → w in W . We precompose the
morphism t : w → homC(Γ, T ) with f to obtain a new
morphism f(t) : v → homC(Γ, T ). Since t ◦ idw = t and
t ◦ (f ◦ g) = (t ◦ f) ◦ g, we can also interpret W -WK-ID and
W -WK-COMP.

In the case that W is a poset W, then we abuse notation,
also calling f(t) by t, and we thus interpret W-WK.

Now we have shown the following.
Lemma 1: There is an interpretation of C-EMP, C-EXT,

VAR, WK, SUBST, W -WK, W -WK-ID, and W -WK-COMP
into C.

If W is a monoidal poset W, then this restricts to an
interpretation of C-EMP, C-EXT, VAR, WK, SUBST, and W-
WK in C. ◀



D. Interpretation of rules for weightings of types

To express the universal property for unary products
weighted by elements of W , the intended interpretation of
the weightings of types, we first need to suppose that V is
powered by W: that is, that for every object V ∈ V and every
w ∈ W , there is an object V w with the following universal
property.

homV(Z ⊗ ιw, V ) ∼= homV(Z, V
w)

Example 22: Note that if V is closed, then it is powered by
W . In all examples of V given above, V is closed (with the
exception of Set(W) – there we need W to be closed). ◀

Now we define unary products weighted by elements of W .
Given an object T ∈ C and an object w ∈ W , these are objects
with the following universal property.

homC(Γ, T
w) ∼= homC(Γ, T )

w

Assuming such a Tw, we calculate for any v ∈ W:

homV(ιv,homC(Γ, T
w)) ∼= homV(ιv,homC(Γ, T )

w)
∼= homV(ι(vw),homC(Γ, T ))

where the first bijection uses the universal property of Tw and
the second is the universal property of homC(Γ, T )

w. Thus,
morphisms Γ →v Tw are in bijection with morphisms Γ →vw

T .
Now the rules can be easily interpreted: WTG-FORM cor-

responds to the existence of the object Tw, WTG-INTRO and
WTG-ELIM then express the two functions between Γ →v Tw

and Γ →vw T , and WTG-β and WTG-η express that they are
inverses of each other.

Lemma 2: Suppose that V is powered by W , and suppose
that C has unary products weighted by W . There is an inter-
pretation of WTG-FORM, WTG-INTRO, WTG-ELIM, WTG-β,
WTG-η into C. ◀

Example 23: When W is 1, we can only weight a type
T by 1, and this weighting is isomorphic to T . Thus, when
V is Set, these type formers do not add anything to the
categorical structure described by the simply typed lambda
calculus. Compare this with the analogous observation on the
syntactic side in Example 2. ◀

E. Interpretation of rules for binary products

The universal property for binary products is as usual.

homC(Γ, T1 × T2) ∼= homC(Γ, T1)× homC(Γ, T2)

For any w ∈ W, we find

homV(ιw,homC(Γ, T1 × T2))
∼= homV(ιw,homC(Γ, T1)× homC(Γ, T2))
∼= homV(ιw,homC(Γ, T1))× homV(ιw,homC(Γ, T2))

where the first bijection uses the universal property of binary
products in C, and the second is the universal property of
binary products in V . Now we see that morphisms Γ →w

T1 × T2 are in bijection with pairs of morphisms Γ →w T1

and Γ →w T2. This is exactly what is expressed by the rules
for binary products, so we have the following result.

Lemma 3: There is an interpretation of the rules ×-FORM,
×-INTRO, ×-ELIM, ×-β, and ×-η into C. ◀

F. Interpretation of rules for function types

We use the usual universal property for exponentials:

homC(Γ× S, T ) ∼= homC(Γ, T
S).

Now we simply observe that

homV(ιw,homC(Γ× S, T )) ∼= homV(ιw,homC(Γ, T
S))

so morphisms Γ × S →w T correspond bijectively to Γ →w

TS .
Thus we interpret [S → T ] := TS , and we see that the rules

for function types are exactly describing the above bijection.
Lemma 4: Suppose that C has exponentials. There is an

interpretation of the rules →-FORM, →-INTRO, →-ELIM, →-
β , →-η into C. ◀

This concludes the interpretation of the syntax into C,
summarized in Theorem 1 above.

G. The syntactic category and completeness

For the rest of this section, we assume the W-category V
is finitely complete and powered by W .

The syntax of the W-enriched simply typed lambda calculus
(perhaps augmented with some constants) naturally forms a
Ŵ-category (see Example 10).

Construction 1: Let C be a collection of constants to be
added to the W-enriched simply typed lambda calculus. We
define the syntactic Ŵ-category SC as follows.

Let the collection ob(SC) of objects be the collection of
types.

For an object w ∈ W and types T, T ′, let homSC
(T, T ′)(w)

be the set of terms of the form T ⊢ t :w T ′. For
f : v → w in W , W -WK gives the restriction map
f(−) : homSC

(T, T ′)(w) → homSC
(T, T ′)(v). The rules

W -WK-ID, and W -WK-COMP ensure that this is a functor
homSC

(T, T ′) : Wop → Set.
To show this is a Ŵ-category, we first need identities: that is,

mapsょ(1) → homSC
(T, T ) for each type T . The rule VAR

gives an element in homSC
(T, T )(1), which is in bijection

with the set of morphisms ょ(1) → homSC
(T, T ) by the

Yoneda Lemma.
We furthermore need to establish composition: that is, maps

homSC
(S, T ) ⊗ homSC

(T,U) → homSC
(S,U). It suffices

to define functions (homSC
(S, T ) ⊗ homSC

(T,U))(w) →
homSC

(S,U)(w) natural in w. By definition,

(homSC
(S, T )⊗ homSC

(T,U))(w)

:= colim v1,v2∈W
w≤v1v2

homSC
(S, T )(v1)× homSC

(S, T )(v2).

Thus, it suffices to define natural functions
homSC

(S, T )(v1) × homSC
(S, T )(v2) → homSC

(S,U)(w)
for w ≤ v1v2. But SUBST gives us a function
homSC

(S, T )(v1)×homSC
(S, T )(v2) → homSC

(S,U)(v1v2)



and W -WK gives us a function homSC
(S,U)(v1v2) →

homSC
(S,U)(w), so we compose these. Naturality is again

given by W -WK together with W -WK-ID and W -WK-
COMP and one of the usual unwritten rules governing implicit
substitution: that f(t)[s/x] = f(t[s/x]) since x as a term
variable cannot appear in the morphism f of W .

The rules governing weighting of types, binary products,
and function types say exactly that SC is cartesian closed. ◀

From the existence of the syntactic category, we automati-
cally get completeness.

Lemma 5: The interpretation of Theorem 1 is complete for
Ŵ-categories: if a judgment holds in all of the interpretations
given there in cartesian closed Ŵ-categories C, then it holds
in the W-enriched simply typed lambda calculus. ◀

Proof: Since such a judgment in particular holds in the
syntactic category, it also holds in the syntax.

We can weaken the hypothesis of this statement to get the
following.

Theorem 2: The interpretation of Theorem 1 is complete:
if a judgment holds in all of the interpretations given there in
cartesian-closed V-categories C for all W-relative monoidal
categories V , then it holds in the W-enriched simply typed
lambda calculus. ◀

We have not defined a category of all V-enriched categories
for all W-relative monoidal categories V , so we will not say
that SC is initial among all such categories. However, SC

is initial among all cartesian closed Ŵ-categories with the
constants C.

Corollary 1: There is a unique (up to isomorphism)
structure-preserving (up to isomorphism) Ŵ-functor from SC

to any cartesian closed Ŵ-category with the constants C.
Given an interpretation of the syntax with constants C in

a Ŵ-category C, there is a unique (up to equality) Ŵ-functor
SC → C that preserves the interpretation (up to equality). ◀
By structure-preserving, we mean that it preserves the con-
stants C and the cartesian closed structure up to isomorphism.

Proof: The proof of Theorem 1 gives the action of the
functor on objects. It also gives the action of the functor
on the components homSC

(A,B)(w) of the hom-presheaves.
By W -WK, the action on these components assembles into a
morphism of presheaves. This functor preserves identities and
composition by construction. It is also structure-preserving by
construction.

By interpretation, we mean an assignment of judgments
to particular (i.e., not isomorphism classes of) components
of C. Thus, it constitutes a choice of the cartesian closed
structure that is otherwise only given up to isomorphism and
this choices can be used to specify the above functor not just
up to isomorphism, but up to equality.

H. Completeness with respect to Set(W)-categories

Even though our initiality result is confined only to Ŵ-
categories, we also might wonder about completeness with
respect to V-categories for other V . We do not give a complete
analysis here, but we discuss how this could be approached
by working out the example V := Set(W).

Remark 2: By focusing on the sets homV(ιw, V ), we are
focusing on the restricted Yoneda embeddingょι : V → Ŵ
that sends V 7→ homV(ι−, V ). That is, we can understand
the interpretation of our syntax in a V-category C given in
Theorem 1 as comprising two steps: construct a Ŵ-category
ょ∗

ι C by changing the base of enrichment viaょι, and interpret
the syntax there. In this light, the focus on Ŵ in the previous
subsection is not surprising. ◀

Now, we show that Set(W) can be regarded a full subcat-
egory of Ŵ and characterize its image.

Proposition 1: The objects in the image ofょι : Set(W) →
Ŵ are those presheaves P with the following properties:

1) the restriction maps of P are monic (so we can think of
them as subset inclusions); and

2) for all w ∈ W and x ∈ P (w), the subset {v | x ∈
P (v)} ⊆ W has a maximal element.

Note that if W is cocomplete, the second requirement is
equivalent to the requirement that P preserves non-empty
limits. ◀

Proof: Sinceょι(S, α)(w) is the subset of S consisting of
those elements x such that w ≤ α(x), we write it as S≥w for
clarity in these proofs.

To see that the objects in the image have these properties,
note that the restriction map corresponding to a v ≤ w is an
inclusion S≥w ⊆ S≥v . Given a w ∈ W and x ∈ S≥w, the
subset {v | x ∈ P (v)} has a maximal element: α(x).

Now, consider a presheaf P satisfying the two properties
above. Let S be the colimit of P , and let α : S → W take
x ∈ S to the maximum of {v | x ∈ P (v)}. We have S≥− = P ,
soょι is surjective on presheaves with these two properties.

Proposition 2: The restricted Yoneda embedding ょι :
Set(W) → Ŵ is fully faithful. In other words, ι : W →
Set(W) is dense. ◀

Proof: Here, for f : (S, α) → (T, β), we also write
f≥w :=ょιf(w) : S≥w → T≥w.

For faithfulness, consider f, g : (S, α) → (T, β) such that
f≥w = g≥w for all w ∈ W and x ∈ f . Then x ∈ S≥α(x), and
f≥α(x)(x) = g≥α(x)(x). But f≥α(x), g≥α(x) are restrictions of
f, g to S≥w, so f(x) = g(x), and we conclude f = g.

For fullness, consider a g(−) : S≥− → T≥−. Given x ∈ X ,
define f : S → T to take x to g(αx)x. This is a morphism
of W-fuzzy sets, since g(αx)x ∈ T≥αx. Now for any w ∈
W and x ∈ S≥w, we have f≥w(x) := f(x) := g(αx)(x)
(using Proposition 1 to think of these elements as all living in
subsets of T ). But by naturality, g(αx)(x) = g(w)(x). Thus
f≥w(x) = g(w)(x), so f≥− = g.

Since we have identified Set(W) with a full subcategory
of Ŵ, we can add rules to the syntax corresponding to the
conditions in Proposition 1 to restrict the interpretation to
this subcategory, making the resulting syntax complete with



respect to it. That is, we could add the following rules.

Γ ⊢ s, t :w T v ≤ w wt Γ ⊢ s = t :v T

Γ ⊢ s = t :w T

Γ ⊢ t :w T

max(t) wt
Γ ⊢ t :w T

w ≤ max(t) wt
Γ ⊢ t :w T

Γ ⊢ t :max(t) T

Theorem 3: There is an interpretation of the W-enriched
simply typed lambda calculus together with the above rules in
cartesian closed Set(W)-categories that extends the interpre-
tation given by Theorem 1.

Moreover, this interpretation is complete. ◀

IV. THE CURRY-HOWARD CORRESPONDENCE AND
INTUITIONISTIC FUZZY LOGIC

Here, we extract from the W-enriched simply typed lambda
calculus a corresponding (in the sense of Curry-Howard) W-
enriched natural deduction. We argue that we obtain a sound
and complete natural deduction system for fuzzy logic, and
we compare this with other proposals in the literature.

A. Syntax of enriched natural deduction
We start with a monoidal poset W as before. We could start

with a monoidal category W , but the posetal case is more
congruent with the setting of natural deduction.

We have the following judgments.

w wt v ≤ w wt Γ ctx T type Γ ⊢w T

If we want to reason about equality (e.g., to compare T 1w and
Tw), then we will also need corresponding equality judgments;
however, we do not need them for the presentation of the rules.

Now we erase terms from the rules of the W-enriched
simply typed lambda calculus and use more logical symbols
to obtain the following rules.

C-EMP

♢ ctx

C-EXT
Γ ctx T type

Γ, T ctx

VAR
Γ, T,∆ ctx
Γ, T,∆ ⊢1 T

WK
Γ,∆ ⊢w T S type

Γ, S,∆ ⊢w T

SUBST
Γ, S,∆ ⊢w T Γ ⊢v S

Γ,∆ ⊢vw T

W-WK
Γ ⊢w T v ≤ w wt

Γ ⊢v T

WTG-FORM
T type w wt

Tw type

WTG-INTRO
Γ ⊢vw T w wt

Γ ⊢v Tw

WTG-ELIM
Γ ⊢v Tw

Γ ⊢vw T

∧-FORM
T1 type T2 type

T1 ∧ T2 type

∧-INTRO
Γ ⊢w T1 Γ ⊢w T2

Γ ⊢w T1 ∧ T2

∧-ELIM
Γ ⊢w T1 ∧ T2

Γ ⊢w Ti

⇒-FORM
S type T type

S ⇒ T type

⇒-INTRO
Γ, S ⊢w T

Γ ⊢w S ⇒ T

⇒-ELIM
Γ ⊢w S ⇒ T

Γ, S ⊢w T

Definition 6: Call the collection of the rules above W-
enriched natural deduction. ◀

Example 24: Note that when W = 1 these are equivalent
to the rules for natural deduction. ◀

Now, as with the simply typed lambda calculus, it is evident
by construction that there is a derivation of a formula Γ ⊢w T
in natural deduction if and only if there is a construction of
a term Γ ⊢ t :w T (modulo the different logical symbols). If
we want a true isomorphism between the sets of derivations
and the sets of terms, then as usual, we also need to add rules
equating derivations that correspond to W -WK-ID, W -WK-
COMP, and the β and η rules of the W-enriched simply typed
lambda calculus.

Theorem 4 (Enriched Curry-Howard correspondence):
There is a correspondence between the derivations of formulas
in W-enriched natural deduction and the terms in the W-
enriched simply typed lambda calculus.

Assuming equations of derivations corresponding to W -
WK-ID, W -WK-COMP, and the β and η rules of the W-
enriched simply typed lambda calculus, this correspondence
becomes an isomorphism. ◀

B. Semantics of enriched natural deduction

The Curry-Howard correspondence is usually presented
as rather self-evident on the syntactical side, as we have
done above. However, there is also a Curry-Howard corre-
spondence on the semantical side. With the perspective of
enriched category theory, we understand the usual Curry-
Howard correspondence between the simply typed lambda
calculus and natural deduction in the following semantical
way. One can construct from the rules for natural deduction
(perhaps augmented with some constants C) a preordered set:
take the set of contexts (equivalently, types) as the underlying
set and say Γ ≤ T whenever Γ ⊢ T is derivable. Then the
rules will ensure that this preordered set has binary meets
and implications. Alternatively, one can read off from the
rules (together with equalities corresponding to β and η
rules governing derivations) a category: take the collection of
contexts (equivalently, types) as the collection of objects, and
let hom(Γ, T ) be the set of derivations of Γ ⊢ T . Thus, one
obtains a syntactic preordered set SC and a syntactic category
Snd
C . We understand the Curry-Howard correspondence to refer

to two facts then: (1) that Snd
C is equivalent to the syntactic

category SC of the simply typed lambda calculus and (2) that
SC , seen as a B-enriched category (where B is the booleans), is
equivalent to the result of changing the base of enrichment of
the (Set-enriched) category Snd

C along the ‘truncation’ functor
τ : Set → B given by identifying all elements of a set (one
should replace B with something else if one wants to be more
constructive). Here we describe the analogous story in our
setting.

Construction 2: Let W := [Wop,B]. Given constants
C, let SC be the W-category whose elements are the
types of W-enriched natural deduction with C and where
homSC (S, T )(w) is inhabited if and only if there is a deriva-



tion of Γ ⊢w T . The rule VAR gives us identities, and the rule
SUBST gives composition. ◀

Example 25: When W = 1, then W = B, and we obtain
the usual syntactic preordered set of natural deduction. ◀

Construction 3: Given constants C, let Snd
C denote the Ŵ-

category whose objects are the types of W-enriched natural
deduction with C and where homSnd

C
(S, T )(w) are derivations

of S ⊢w T . Since the collection of objects and each set
homSnd

C
(S, T )(w) is in bijection with the analogous collections

of sets comprising SC (Construction 1), we conclude that this
also forms a Ŵ-category, equivalent to SC . ◀

Example 26: When W = 1, we obtain the usual syntactic
category of natural deduction. ◀

By the constructions of Snd
C and SC we find the following.

Proposition 3: Given constants C, SC is equivalent to the
W-category obtained by changing the base of Snd

C along the
functor τ∗ : Ŵ → W given by postcomposition with τ :
Set → B. ◀

This establishes the existence of the syntactic preordered
set, the syntactic category, and their relationship. Note also
that any interpretation of the W-enriched simply typed lambda
calculus in a W-category factors through the interpretation of
the W-enriched simply typed lambda calculus in W-enriched
natural deduction, producing an interpretation the W-enriched
natural deduction in the same W-category. Thus, we find the
following as a corollary of Theorem 1 and the fact that there is
certainly an interpretation into the syntactic W -category given
in Construction 2.

Proposition 4: There is an interpretation of W-enriched
natural deduction in any cartesian closed W -category. This
interpretation is sound and complete. ◀

Example 27: When W = 1, this is the usual interpretation
of natural deduction in cartesian closed preordered sets. ◀

To slickly expand this interpretation, we employ the change-
of-base strategy explained in Remark 2.

Definition 7: For a monoidal posets W,V, call V a W-
relative monoidal poset if as categories, V is a W-relative
monoidal category, i.e., if there is a homomorphism ι : W →
V. ◀

Given a W-relative monoidal poset V, we take the restricted
Yoneda embedding ょι : V → W given by ょι(v)(w) :=
homV(ιw, v), where we view V as a B-enriched category so
that this takes values in B. Thus, we give an interpretation
of W-natural deduction in any V-enriched category C by
changing the base of C to obtain a W-enriched category and
interpreting the syntax there, and we thus obtain the following
as a corollary of Theorem 1 and Proposition 4.

Theorem 5: Consider a monoidal poset W and a W-relative
monoidal poset V with finite meets and which is powered by
W.

There is an interpretation of W-enriched natural deduction
in any cartesian closed V-category. This interpretation is sound
and complete. ◀

C. W-enriched natural deduction as an intuitionistic fuzzy
logic

We see W-enriched natural deduction as an intuitionistic
fuzzy logic. Fuzzy logic [20] has many instantiations. It is
usually presented as a generalization of classical logic, and
with that motivation, the perspective taken is then that the
formulas in n variables of fuzzy logic, which are built out of
connectives similar to those of classical logic, have semantics
in functions Wn → W (and usually, W := I). Thus much of
the literature works on extending the truth table semantics of
classical logic to the fuzzy setting. A minority of the literature
(e.g., [27, 5, 3]) proposes (or works with) an intuitionistic
fuzzy logic. Our rules for W-natural deduction present another
alternative for an intuitionistic fuzzy logic, one which we
propose is a more faithful generalization of intuitionistic logic,
at least insofar as it is the only one which generalizes the
Curry-Howard-Lambek correspondence that we see as central
to intuitionistic logic.

In Construction 2, we gave syntactic W-category of W-
natural deduction that generalizes the semantics of natural
deduction in preordered sets. To make the connection with
fuzzy logic tighter, we also want to see an interpretation
of these rules into W-categories. That is, in semantics of
intuitionistic logic in preordered sets, one can find out if there
is a derivation Γ ⊢ T by calculating hom(Γ, T ) ∈ B. In our
setting, we want to have semantics of our fuzzy intuitionistic
logic in W-categories (or similar), so that we can find out
to what extent there is a derivation Γ ⊢ T by calculating
hom(Γ, T ) ∈ W.

So suppose (as in Section III) that W has all finite products
and is closed. This is a W-relative monoidal category using
the identity functor. By Theorem 1, there is an interpretation
of the W-enriched simply typed lambda calculus in any W-
category C which factors through an interpretation of W-
enriched natural deduction in C.

Now note that something is slightly off: we want to gen-
eralize the truth values of logic from B to W. However, the
usual rules of natural deduction coincide with the rules for 1-
enriched natural deduction, not B-enriched natural deduction,
so we have generalized our ‘truth values’ from 1 to W, not
from B to W (yet). There certainly is an interpretation of 1-
enriched natural deduction in 1-enriched categories, but this
is trivial. The booleans B appear because of the need to have
an object of the enriching poset which represents having no
derivation Γ ⊢ T . Thus, we interpret W-natural deduction
into W0-categories, where W0 is W freely adjoined with an
initial, absorbing element 0. Then the inclusion ι : W ↪→ W0

is a homomorphism of monoidal posets, and assuming W
has finite meets and exponentials, then W0 has finite meets
and is powered by W. Thus, by Theorem 5, we obtain an
interpretation of W-enriched natural deduction in any cartesian
closed W0-category.

We showed above in Proposition 4 that there is a sound and
complete interpretation of W-natural deduction in cartesian
closed W-categories. Now we show a similar result for W0-



categories, and this result can be seen as a truncation of
Proposition 1.

Proposition 5: Suppose that W0 is cocomplete. The re-
stricted Yoneda embeddingょι : W0 → W is an injection, and
its image consists of all those P ∈ W that contain maximal
elements (seen as subsets of W). ◀

Proof: The restricted Yoneda embedding has a retraction
P 7→ ∨P and so is an injection. On the sub-preordered set of
W described in the statement, this restricts to a bijection.

Now, if we add the following proof-irrelevant versions of the
rules discussed in Section III-H, we characterize the image of
the restricted Yoneda embedding, and thus we obtain a sound
and complete interpretation of W-enriched natural deduction
with these new rules in any cartesian closed W0-category.

Γ ⊢w T

max(t) wt
Γ ⊢w T

w ≤ max(t) wt
Γ ⊢w T

Γ ⊢max(t) T

Theorem 6: If W is cartesian closed and cocomplete, then
there is a sound and complete interpretation of W-natural
deduction together with the rules above in cartesian closed
W0-categories. ◀

D. Comparison with other intuitionistic fuzzy logics

We end this section with a discussion of other intuitionistic
fuzzy logics in the literature.

Takeuti and Titani [27] are usually credited with intuitionis-
tic fuzzy logic. They consider the collection of truth values to
be I. They add rules (but no judgments) to Gentzen’s system
LJ [10] (which is also basically what we have generalized with
our W-enriched natural deduction) to obtain a logic in which
one can reason about judgments of the form Γ ⊢w t : T
only for w = 1 (in our notation). They obtain a soundness
and completeness result stating that a judgment Γ ⊢1 t : T
is derivable if and only if it is valid, meaning that seen as
a function In → I, it is constant at 1. Thus, in comparison
with this work, we add judgments and rules to be able to
reason about Γ ⊢w t : T for any w, and we obtain soundness
and completeness results governing any such judgment. On
the other hand, in comparison with our work, they add rules
specific to I.

Baaz, Chiabattoni, and Fermüller [5] give an alternate
natural deduction system for the logic developed in [27]. But
like [27], they only reason syntactically about formulas like
Γ ⊢w t : T for w = 1.

Atanassov [3] gives an alternate intuitionistic fuzzy logic,
though again the truth values lie in I. They see the move from
classical fuzzy logic to intuitionistic fuzzy logic as assigning
to every proposition, not only a truth value, but a falsity value,
an approach that is incomparable to ours.

We see the strength of our approach being that it straight-
forwardly generalizes not only intuitionistic logic, but also the
Curry-Howard-Lambek correspondence that characterizes it,
and also that we obtain soundness and completeness results
regarding judgments Γ ⊢w t : T for all w ∈ W.

V. CONCLUSION AND FUTURE WORK

In this work, we have defined, for any monoidal category
W, (1) the W-enriched simply typed lambda calculus, (2) W-
enriched natural deduction, and (3) their semantics in cartesian
closed enriched categories, establishing an enriched version of
the Curry-Howard-Lambek correspondence and showing that
in the Lambek part, the interpretation is sound and complete.

We have given many examples of enriching categories to
which this applies, pointing to potential connections with
directed type theory and axiomatic domain theory in particular.
However, in this paper, we have only explored the examples
of fuzzy sets and fuzzy logic, giving sound and complete
semantics in those settings by adding characterizing syntactical
rules, and comparing our resulting intuitionistic fuzzy logic to
others in the literature.

In future work, we hope to develop other examples further,
generalize the setting, and develop a dependent version, as
detailed below.

We see the need for a coherent mathematical theory that
encompasses the current zoo of new modal (or modal-esque)
type theories being developed as one of the most important
problems in the mathematical study of type theory currently.
We hope that the perspective on modal(-esque) type theories
described Example 17 will be instructive in the sense that it
offers a direction for developing the categorical semantics of
at least some of the features offered in these type theories.

We also hope to generalize this work further by, for instance,
investigating to what extent the functor ょι : V → Ŵ
needs to factor through V̂ (i.e., to what extent the ‘features’
we extract need to be representable), and if there are any
interesting examples where it does not. Furthermore, could
the requirement that ι is strong monoidal be relaxed? These
are avenues for modest generalization, but we do not see this
work as extending to any arbitrary enriched category. Without
a radical change in meaning of the word syntax, the syntax
of any logic or type theory always forms a collection of sets.
Thus, it is hard to imagine straying very far from the presheaf-
central story we have presented here.

The obvious next step, however, is to develop a dependent-
typed version, generalizing both our W-enriched simply typed
lambda calculus and Martin-Löf type theory. Such a W-
enriched dependent type theory will have semantics in (among
other structures) an enriched version of display map categories,
and it will have type formers corresponding to certain weighted
limits, among others.
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