
Type Theory

Lectures by Paige Randall North
Notes by Jason Schuchardt

Ross Program, July 2019

Contents

1 Lecture 1 1
1.1 Basics . 1
1.2 A first type theory: The Simply Typed Lambda Calculus 2

1.2.1 Things we can do! . 3

2 Lecture 2 4
2.1 Contexts . 4
2.2 Simply Typed Lambda Calculus Again 5

2.2.1 Free and bound variables 6

3 Lecture 3 7
3.1 And Types . 8
3.2 Philosophy . 9
3.3 Disjunction: ∨-types . 9
3.4 Bottom and Top . 11

4 Lecture 4 12
4.1 Set interpretation of type theory 12
4.2 Natural Numbers . 12

4.2.1 Examples of using the function construction rule for the
natural numbers . 14

4.3 The list type . 15

5 Lecture 5 16
5.1 Dependent Type Theory . 16
5.2 Definition of Dependent Type Theory 17

5.2.1 The types . 17
5.2.2 The type Id . 18
5.2.3 Relations in sets . 19
5.2.4 Relations in type theory 19
5.2.5 Axiom K or identity reflection rule 20

1

6 Lecture 6 20
6.1 Sum Types . 20
6.2 Fibers . 22
6.3 Unions . 23

7 Lecture 7 24
7.1 Product Types . 24

7.1.1 In Sets: . 25
7.2 Π-types . 25

7.2.1 ∧-types . 26
7.2.2 =⇒ -types . 27
7.2.3 Logic interpretation . 27

7.3 Returning to Id-types. 27

8 Lecture 8 29
8.1 Identity terms in Σ-types . 29
8.2 Identity terms in Π-types . 31

9 Lecture 9 32
9.1 Identity types . 32

9.1.1 Π types . 32
9.1.2 Id types . 32
9.1.3 U types . 33

9.2 Programs . 33
9.2.1 Univalent foundations . 33
9.2.2 Homotopy Type Theory 33

9.3 h-levels . 34
9.3.1 h-level 0 (contractible) . 34

10 Lecture 10 35
10.1 Propositions (h level 1) . 36
10.2 Sets (h level 2) . 38
10.3 h-levels . 38

10.3.1 Topology . 39

1 Lecture 1

Type theory is a relatively new branch of math. It cannibalizes a lot of other
areas of mathematics. In particular it has connections to logic, set theory, and
functional programming. It is the basis of a lot of modern functional program-
ming. It also takes a lot of inspiration from category theory, and its subfield,
topos theory. It’s also related to homotopy theory.

2

The map:

Formal Verification Logic Foundations of Mathematics

Functional Programming Type Theory Set Theory

Homotopy Theory Category Theory Topos Theory

Practice of Mathematics

1.1 Basics

Basic objects are types and terms. Every term belongs to exactly one type.
When the term t belongs to a type T , then we write t : T .

Example 1.1. In set theory, one writes 5 ∈ N. In type theory, one writes 5 : N.

In type theory, every term belongs to exactly one type. This is not the case
in set theory.

Example 1.2. In set theory, one can think of 5 by itself. It is itself a set. One
can then say that 5 ∈ N, and 5 ∈ R.

This is not the case in type theory. In type theory, one can only consider a
term, like 5, as being part of a type, N.

The terms 5 : N and 5 : R are completely different things. We might be
able to compare them in a few classes, but they aren’t immediately comparable.
They are distinct.

History: The first person to come up with a sort of type theory was Bertrand
Russell in 1902. He invented it to solve Russell’s paradox (Is there a set that con-
tains all the sets that don’t contain themselves). However, it was very different
from what we’ll be talking about.

1.2 A first type theory: The Simply Typed Lambda Cal-
culus

The simply typed lambda calculus (Church 1940) is the simplest type theory
along the lines of what we’re thinking about, and a model for computation
(functional programming).

Definition 1.1. A simply typed lambda calculus with =⇒ consists of the
following:

• Atomic types T1, . . . , Tn.

• A type S =⇒ T (S “implies” T) for every two types S and T .

3

• For each type T , we have variables

xT1 , . . . , x
T
m : T,

and for any term t : T and variable x : S, we have the term λx.t : S =⇒ T .

We say we are abstracting x from t. The term t might involve x (if it
doesn’t then the “function” we are defining is a constant function).

• For every term f : S =⇒ T , and every term s : S, we have a term fs : T .
We call this term the application of f to s.

These are subject to the equations

• For every term t : T , variable x : S, term s : S,

(λx.t)s = t[s/x],

where t[s/x] is the term obtained from t by replacing every instance of x
with s.

• For each f : S =⇒ T and variable x : S which doesn’t occur in f (so we
don’t have variable naming conflicts basically). Then we have

λx.(fx) = f : S =⇒ T

Another example of a type is N. N is a type with terms 0 : N and Sn : N,
where n : N is a term. 0 is a closed term of N.

T1 is an atomic type, but T1 =⇒ T2 is nonatomic. (T1 =⇒ T2) =⇒ T3 is
also nonatomic.

1.2.1 Things we can do!

Example 1.3. For every term t : T not containing all variables of type S, there
is a term of S =⇒ T . We need to supply a variable x : S and our term t : T
to get such a term. For example λxSj .t : S =⇒ T , where xSj doesn’t occur in t.

Then
(λxSj .t)s = t[s/xSj] = t.

This is a constant function that sends everything in S to our term t.

Example 1.4. For every type T , there is a term T =⇒ T . Let x : T be a
variable. We can build the identity function:

λx.x : T =⇒ T.

The first equation tells us that

(λx.x)t = x[t/x] = t,

which is why we can call it the identity function.

4

Question: Do we have a different identity function for each variable?
Answer: We can prove that they are the same. In type theory we distin-

guish between syntax and semantics. The formulas λx.x and λy.y are different
formulas, in a sort of naive sense. However their semantics are somehow the
same.

For the proof, we can use the function variable replacement rule (the second
equation)

λx.(fx) = f.

If x and y are variables, then let f = λy.y.

λy.y = f = λx.(fx) = λx.((λy.y)x) = λx.x.

This is a basic theory of functions. We have a type for functions, S =⇒ T ,
and an identity function, λx.x : T =⇒ T .

Note! The only functions we have are ones for which we can write down an
explicit formula. E.g. λx.x, λx.t.

This is not a theory of mathematical functions (in the sense of Set Theory),
but computational functions!

What is a “mathematical” function. Officially, in set based math, a function
f : X → Y is defined as a graph G ⊂ X × Y . Intuitively, this set is something
like a table, that records for each x ∈ X, the value f(x) ∈ Y . For example, for
the function

λx.x2,

(the function f(x) = x2) from R to R. The set theoretic representation of this
function will be as the set of pairs

{(0, 0), (1, 1), (2, 4), (
√

2, 2), . . .}

Even though the functions we consider in math usually have nice and finite
formulas, a mathematical function doesn’t have to have a formula, and might
only be describable by such an infinite table.

Neither humans nor computers can work with infinite descriptions, so if
we’re interested in studying functions in a computational setting, we need a
finite formula for every function.

In type theory, we have the interpretation

Functions←→ Programs.

Under this interpretation

Types←→ Specifications of programs

Terms←→ Programs fulfilling the specification

S =⇒ T ←→ Programs which take input s : S and return t : T

5

2 Lecture 2

2.1 Contexts

Contexts are important for math.

Example 2.1. For any natural number n, 2n is even.
The phrase “2n is even” is the math part. The phrase “For any natural

number n” is the context. It declares our variable basically.
In a type theoretic way, we might say: For n : N, 2n is even.

Example 2.2. Another sentence might be “Suppose f : R→ R is a continuous
function such that f(0) < 0 and f(1) > 0, then there is some c ∈ R, 0 < c < 1
such that f(c) = 0.” The context here declares the variable f .

Example 2.3. For f : T , there is some · · · . We can encapsulate all of the
hypotheses on f into the type T . We can have T be the type whose terms t are
continuous functions R→ R such that t(0) < 0 and t(1) > 0.

Example 2.4. For any variable x : T , there is a term x : T . In symbols, we
might write:

x : T ` x : T,

where the left x : T is the context, and x : T is the product.

Example 2.5. We can also write something similar for function application.
For any variable f : S =⇒ T , and any x : S, we get fx : T . In symbols, this is

f : S =⇒ T, x : S ` fx : T.

Example 2.6. In the natural numbers, we have the statement

` 0 : N.

This requires no context, since there are no hypotheses necessary.

2.2 Simply Typed Lambda Calculus Again

We’ll redefine the STLC with some notation that became standard a bit over
twenty years ago, that will help us fit it into a more modern framework.

There are three kinds of judgments:

1. (Is a type judgement) TYPE (ex. T1 =⇒ T2 TYPE)

2. (Is of type judgement) ` : (ex. f : S =⇒ T, x : S `
fx : T)

3. (Equality judgement) ` = : (ex. x : T ` (λy.y)x =
x : T)

6

These are the things that we can say about our type theory. A rule consists
of

(some judgements)

(a judgement)
.

For example, we might have the rule

` f : S =⇒ T,` S : S

` f(S) : T
.

Definition 2.1. The simply typed lambda calculus is given by the following
rules:

1. We have types:

` T1 type
, . . . ,

` Tn type

2. And we have terms, we think of as variables:

T type

` xT1 : T
, . . . ,

T type

` xTm : T

3. We have a secret judgement for contexts, satisfying the rules

∅ ctxt
,

Γ ctxt, T type

Γ, xTi : T ctxt
,

Γ, x : T,∆ ` x : T
,

Γ ` t : T, x : T ` s : S

Γ ` s[t/x] : S

4. We have rules for equality that are fairly obvious

t : T

t = t : T
,

t = s : T

s = t : T
,

t = s : T, s = u : T

t = u : T

We also have an equality rule for substitution.

5. Rules for =⇒ -types

S type, T type

S =⇒ T type
,

S type, T type, xSi : S ` t : T

λxSi .t : S =⇒ T

omitting the type judgements, we have

f : S =⇒ T, s : S

fs : T
,

xSi : S ` t : T, s : S

(λxSi .t)s = t[s/xSi] : T

f : S =⇒ T, xSi : S

λxSi .(fx
S
i) = f : S =⇒ T

when xSi doesn’t appear in f .

A whole bunch of turnstiles were omitted, which is because we want all the
contexts here to implicitly be generic, they might all be some context Γ.

For example, we might change the function application rule to be

Γ ` f : S =⇒ T, Γ ` s : S

Γ ` fs : T
.

7

2.2.1 Free and bound variables

In computer science, there is a big distinction between free and bound variables.
Consider the statement

x : N ` x2 : N.

Here x is free. We can then use our λ-abstraction rule, to form the function

` λx.x2 : N =⇒ N.

In this sentence, x is bound. We say λ is a binder and that it binds x.
Another example of a binder, in R is∫ 1

0

x2 dx.

The integral sign,
∫ b
a
dx binds the x in the formula x2.

Recall the rule
Γ, xS1 : S ` t : T

Γ ` λxS1 .t : S =⇒ T
.

Example 2.7. We can derive a term of

S =⇒ (S =⇒ T) =⇒ T.

Intuitively, we can define ε(s)(f) : T . This is the evaluation map, ε(s)(f) = f(s).
How do we get this? We apply our rules. We want to derive

s : S, f : S =⇒ T ` fs : T

so that we can apply λ-abstraction.
We have to start with our function application rule

s : S, f : S =⇒ T

fs : T
.

We know
s : S, f : S =⇒ T ` s : S

and
s : S, f : S =⇒ T ` f : S =⇒ T,

so by our function application rule, we conclude

s : S, f : S =⇒ T ` fs : T.

Then by the lambda abstraction rule, we have

s : S ` λf.fs : (S =⇒ T) =⇒ T,

and abstracting a second time, we have

λs.λf.fs : S =⇒ (S =⇒ T) =⇒ T,

8

as desired.
Question: Is the idea of a context, roughly the following?
In ordinary logic, we have formulas which have free variables in them. How-

ever, in type theory, all of our terms have types, so our free variables also need
to have types. A context is a way of recording the free variables in your formulas
and tracking their types.

Answer: Yes, that’s one way of thinking about contexts.
Question: Are these rules reversible? Answer, no.
Question: Would we formulate ring theory in as judgements? Answer: No,

instead the axioms of ring theory will be terms that live in certains types.
Question: What about associativity? Is that a judgment? Answer: No,

rather a+ (b+ c) = (a+ b) + c is a type, and a proof of associativity is a term
in this type.

3 Lecture 3

Correction:
Last time we wrote the rule

T type

xTi : T
,

but this should really be
T type

xTi : T ` xTi : T
,

3.1 And Types

Definition 3.1. The rules for ∧-types are the following

1. ∧-type formation:
S type, T type

S ∧ T type
,

2. term construction
Γ ` s : S, Γ ` t : T

Γ ` (s, t) : S ∧ T
,

3. and term deconstruction

Γ ` c : S ∧ T
Γ ` π1(c) : S, Γ ` π2(c) : T

4. compatibility

Γ ` s : S, Γ ` t : T

Γ ` π1(s, t) = s : S, Γ ` π2(s, t) = t : T

9

Object Programatic View Logical View
Types ←→ Program Spaces ←→ Propositions
Terms ←→ Programs ←→ Proofs

Terms in context ←→ Programs that take input ←→ Proofs that take hypotheses

Table 1: Interpretations of type theory

Example 3.1. We get functions π1 : S ∧ T =⇒ S and π2 : S ∧ T =⇒ T .
These are derived in the following way: We start with

c : S ∧ T ` c : S ∧ T,

by deconstruction this gives

c : S ∧ T ` π1(c) : S,

and then by lambda abstraction, we get

` λc.π1(c) : (S ∧ T) =⇒ S.

Whenever we get a function from

Γ, x : S ` y : T

Γ ` λx.y : S =⇒ T
,

we call this Currying, and say we curry the x.

Example 3.2. We can derive a term of

(S =⇒ T) ∧ S =⇒ T.

We start with the following things we know:

c : (S =⇒ T) ∧ S ` π1(c) : S =⇒ T,

and
c : (S =⇒ T) ∧ S ` π2(c) : S.

Then function application gives

c : (S =⇒ T) ∧ S ` π1(c) π2(c) : T,

so finally, by lambda abstraction, we have

` λc.(π1(c) π2(c)) : (S =⇒ T) ∧ S =⇒ T

10

3.2 Philosophy

There is a logical interpretation of type theory.
For example, we might have the type 12 is composition, a proof might be

12 = 3 · 4. Another proposition/type would be T has a term, a proof might
require hypotheses/context, and we could use the context to produce a term of
T .

Example 3.3. f : S =⇒ T is a function that turns a proof of S into a proof
of T .

For example, if S = “12 is composite.”, and T = “24 is composite.”.

Example 3.4. A term of the type c : S∧T represents a proof of S and T , since
from c we can obtain proofs π1(c) : S and π2(c) : T .

As a silly example, we could say S = “12 is composite”, and T = “4 is composite”.

In the logical interpretation, the term we just constructed of type (S =⇒
T) ∧ S =⇒ T , tells us that if we know P =⇒ Q, and P , then Q is true. This
rule is called modus ponens in propositional logic.

This logic/program correspondence is called the Curry-Howard correspon-
dence, and dates from 58-69. It is also called the Proofs-as-programs paradigm.

Usually in mathematics, proofs are often thought of as metamathematical.
In type theory, proofs are actual mathematical objects. Thus we say type theory
is proof relevant. It is often important that there is more than one proof.

Note that in type theory, proofs are always constructive. This is because
we are always constructing a term in a type. This is constructive mathematics,
and we don’t use the law of excluded middle.

3.3 Disjunction: ∨-types

Definition 3.2. Rules for ∨-types.

1. type construction:
S type, T type

S ∨ T type

2. term construction:
Γ ` s : S

Γ ` i1(s) : S ∨ T
Γ ` t : T

Γ ` i2(t) : S ∨ T

3. term deconstruction:

Γ, x : S ` r : R, Γ, y : T ` r′ : R

Γ, z : S ∨ T ` jr,r′(z) : R

4. compatibility
Γ, x : S ` jr,r′(i1(x)) = r : R

Γ, y : S ` jr,r′(i2(y)) = r′ : R

11

To construct a term of S ∨ T , we can either supply an s : S, or a t : T . In
the logical interpretation, we can say that to prove S ∨ T , it suffices to prove S
or T .

To construct a term of R from a term of S ∨ T , we can supply functions
f : S =⇒ R, and g : T =⇒ R. In the logical interpretation, this says that if
we want to prove R using S ∨ T , we can prove S =⇒ R and S =⇒ T .

Example 3.5. From these rules, we get some functions:

1. i1 = λs.i1(s) : S =⇒ S ∨ T ,

2. i2 = λt.i2(t) : T =⇒ S ∨ T ,

Now we want to prove

R ∧ (S ∨ T) =⇒ (R ∧ S) ∨ (R ∧ T).

We begin with

x : R, y : S ` i1(x, y) : (R ∧ S) ∨ (R ∧ T), x : R, z : T ` i2(x, z) : (R ∧ S) ∨ (R ∧ T)

x : R,w : S ∨ T ` ji1,i2(x,w) : (R ∧ S) ∨ (R ∧ T)

Then we can conclude

v : R ∧ (S ∨ T) ` ji1,i2(π1v, π2v) : (R ∧ S) ∨ (R ∧ T).

Finally, we lambda abstract to get

` λv.ji1,i2(π1v, π2v) : R ∧ (S ∨ T) =⇒ (R ∧ S) ∨ (R ∧ T).

Question: In what sense is the string unambiguous? Can we work out things
from the type? Answer: We’re abbreviating slightly, but we can work out the
types of the important things from the type of the whole expression.

Note from note taker, we’re eliding a rather important piece from this proof,
where we construct a function ir : S =⇒ R ∧ S.

3.4 Bottom and Top

Definition 3.3. We have the rules for true or top: >, and false or bottom: ⊥

1.

> type
,
∗ : >

2.

⊥ type
,

Γ ` f : ⊥, S type

Γ ` jf : S

Exercise. Prove S =⇒ >, ⊥ =⇒ S.

12

Definition 3.4. Define ¬S as S =⇒ ⊥. We cannot construct a term of

S ∨ ¬S

for every S.

This corresponds to unprovable statements in logic. This fact is related to
Gödels incompleteness theorem.

A term of S ∨ ¬S is called the law of excluded middle.
We can’t prove the law of excluded middle in type theory, and we can’t prove

its negation, so the law of excluded middle is independent of the theory.
We say a statment is independent of axioms/a proof system if when you add

that statement, you cannot prove false, and when you add the negation of that
statement, you still cannot prove false. The existence of independent statements
means that the theory is incomplete.

We model theory in different categories. Since a model is more concrete, we
often have statements that are true in the model that are not true in the theory.

When we construct models, we are looking for more complete systems.
We can construct a model in the category of sets. Types are sets, terms are

elements, implies is the set of functions, ∧ = ×, ∨ = t, > = {∗}, ⊥ = ∅. Then
in Set,

S ∨ ¬S = S t (S → ∅).

Can we construct a term of this type? (I.e., an element of this set.) If S = ∅,
then there is an element of S → ∅, so S t (S → ∅) is nonempty, and if S
is nonempty, then S t (S → ∅) is nonempty. Thus in either case, the law of
excluded middle holds for Set.

The law of excluded middle fails for presheaves on the arrow category. I.e.,
the category

[2,Set].

The objects are triples (A,B, f), with A,B, sets and f : A → B a function.
The arrows in this category are pairs (g, h) : (A,B, e)→ (C,D, f), of functions
g : A→ C, h : B → D such that

A B

C D

e

g h

f

commutes.
Then ⊥ = (∅, ∅, id), > = (∗, ∗, id). Then we can show that for some objects

S in this category, S ∨ ¬S is ‘empty’ generally. Terms of an object S here are
elements of hom(>, S).

13

4 Lecture 4

4.1 Set interpretation of type theory

We were talking about the set interpreation of type theory last time. See a
summary in Table 2.

Type Set

Term Element
Dependent term, x : T ` s(x) : S Function T → S
S =⇒ T Set of functions, hom(S, T)
S ∧ T Cartesian product, S × T
S ∨ T Disjoint union, S t T
⊥ ∅
> {∗}
¬A := A =⇒ ⊥ hom(A, ∅)

A ∨ ¬A A t (A→ ∅) =

{
{∗} if A = ∅
A otherwise

Table 2: The correspondence between type theoretical notions and their inter-
pretations in set theory.

4.2 Natural Numbers

What should they be?
In any type definition, we introduced terms. For example, we had

` ∗ : T

` a : A

` i1(a) : A ∨B
x : S ` t : T

` λx.t : S =⇒ T

These elements are called canonical terms. What are the canonical terms of N?

Definition 4.1. The natural numbers type will be defined by the following
rules:

1. The natural numbers is a type:

N type

2. Term construction

0 : N
Γ ` n : N
Γ ` sn : N

.

3. We also need a way to access the terms in the type, which we will do by
specifying how we can build functions out of the type. This is like with
the ∨ type, where we had the rule

14

Γ, a : A ` y : Z Γ, b : B ` z : Z

Γ, c : A ∨B ` jy,z(c) : Z

For the natural numbers, we have the rule (which we might call induction)

T type Γ ` z : T Γ, t : T ` σt : T

Γ, n : N ` jz,σ(n) : T

4. We need this to satisfy the following equality rules:

Γ ` jz,σ(0) = z : T,

and
Γ, n : N ` jz,σ(sn) = σ(jz,σ(n)) : T.

We say N is inductively or recursively defined. N is defined to be the type
whose terms are 0 : N, sn : N for every n.

Contexts were also recursively defined, as a list, with the rules:

∅ ctxt

Γ ctxt T type

Γ, x : T

The natural numbers form a sort of tree, as do contexts.

0 ∅ Γ

s0 x : Γ ∆

s20 x : Γ, y : ∆ E

s30 x : Γ, y : ∆, z : E

On the left, we have the construction of 3 : N, and on the right, we have the
construction of the context x : Γ, y : ∆, z : E.

The types in the simply typed lambda calculs are also recursively defined.
We started with T1, . . . , Tn. For example, the tree for (T1 =⇒ T2) =⇒
(T3 =⇒ T4) is

T1 T2 T3 T4

T1 =⇒ T2 T3 =⇒ T4

(T1 =⇒ T2) =⇒ (T3 =⇒ T4)

15

4.2.1 Examples of using the function construction rule for the nat-
ural numbers

We’ll construct a function

f : T =⇒ T, n : N ` fn : T =⇒ T,

where fn = f ◦ f ◦ f ◦ · · · ◦ f n times.
The plan is to define c(f, n) by the rules c(f, 0) = idT and c(f, sn) = f ◦

c(f, n).
The value at zero is

f : T =⇒ T ` λx.x : T =⇒ T,

and the inductive step is

f : T =⇒ T, g : T =⇒ T ` f ◦ g : T =⇒ T.

These yield
f : T =⇒ T, n : N ` jλx.x,f◦−(n) : T =⇒ T.

Then we know that j(f, 0) = λx.x, and j(f, sn) = f ◦ j(f, n).

Question. It seems like we could do the composition in the other order, and its
not clear that they are equal.

Answer: Yes. We need a stronger type theory to prove that. We can prove
it for a specific number, e.g., we can prove f ◦ (f ◦ f) = (f ◦ f) ◦ f .

Example 4.1. Define the function λx.s2x : N→ N using induction rather than
lambda abstraction. (This is the function x 7→ x+ 2)

For 0, we have
` s(s(0)),

and for the inductive step, we have

n : N ` sn : N,

so applying the inductive function formation rule, we have

n : N ` js20,s(n) : N.

Checking, we have ` j(0) = s20 : N, and n : N ` j(sn) = s(jn) : N.
Question: It seems like we could prove that this function is actually equal to

λx.s2x with some sort of induction. Would that be a function from N to some
equality type?

Answer: Yes, but we don’t have an equality type yet. Hopefully we’ll talk
about the dependently typed lambda calculus tomorrow, and then we can in-
troduce that type.

16

Example 4.2. Want to define n : N,m : N ` add(n,m) : N. For zero we have

n : N ` n : N,

and for the inductive step, we have

n : N, x : N ` sx : N.

This yields
n : N,m : N ` jn,λx.sx(m) : N.

Checking this, we have n : N ` jn(0) = n, and n : N,m : N ` jn(sm) =
sjn(m) : N.

Notice the asymmetry here. We inducted on m, and we could have inducted
on n. Metatheoretically, we can see that these two ways of defining addition are
the same, but hopefully next time, we can prove that they are the same inside
the type theory.

Example 4.3. Now we can define multiplication! n : N,m : N ` mult(n,m) : N.
Once again, we start with 0:

n : N ` 0 : N,

and the inductive step:
n : N, x : N ` add(x, n).

Then by induction, we get the function

n : N,m : N ` mult(n,m) : N,

and we know that mult(n, 0) = 0, and mult(n, sm) = add(mult(n,m), n).

4.3 The list type

Lists are defined by the rules:

1.
T type

List(T) type

2. Canonical elements:

nil : List(T)
,

Γ ` ` : List(T), t : T

Γ ` con(`, t) : List(T)

3. Induction:

Γ ` s : S, Γ, x : List(T), y : T ` c(x, y) : S

Γ, ` : List(T) ` js,c(`) : S

4. Where induction satisfies the coherence rules:

js,c(nil) = s, and js,c(con(x, y)) = c(x, y)

17

5 Lecture 5

5.1 Dependent Type Theory

The syntax rules were passed out in class. They come from a standard reference.
What is dependent type theory?
For example, we can consider the type List(T). We can consider a pair of

lists and send them to a list of pairs

([1, 2, 3], [3, 2, 1]) 7→ [(1, 3), (2, 2), (3, 1)]

We could then add them together and get the list [3, 4, 3], and then add these
together to get 10. However, we can’t do this, because we can’t talk about the
length of a list in the type.

We want a type List(n, T) for each n : N and type T such that the “union
over n” is List(T).

We talked about a type/proposition “12 is composite,” but this is awkward.
We’re usually more interested in the predicate, “ is composite,” or perhaps
with a variable, “n is composite.”

Types should also be dependent on hypotheses/variables.

Example 5.1. I.e., we want to be able to write something like this,

T type

n : N ` List(n, T) type
,

where the type depends on the parameter n. Similarly, we might write our is
composite predicate as

n : N ` isComp(n) type

Note. A family of sets T (x) indexed by Γ produces a natural function
⊔
x∈Γ T (x)→

Γ, which takes an element of the disjoint union and returns the index of the set
it came from. Conversely, given a function π : T → Γ, we get a family π−1(x)
over Γ.

This gives a ‘bijection’

{families of sets indexed by Γ} ←→ {functions with codomain Γ}

(ignoring size issues).

Example 5.2. For the list type, we have the following:

for n : N, List(n,T)←→
⋃
n:N

List(n, T)→ N

18

Type Programming Logic Set

x : Γ ` T (x) type A program that takes in-
put x “(Given a n : N
print all factors of n)”

A predicate, “n is prime” A family of sets T (x) in-
dexed by Γ.

5.2 Definition of Dependent Type Theory

Per Martin-Löf (70s-80s). There are four judgements:

1. Is a type in a context:
Γ ` T type

2. Type equality in a context:

Γ ` S = T

3. Is a term of a type in a context:

Γ ` t : T

4. Term equality in a context:

Γ ` s = t : T

In the context formation rules that we had before, we had

∅ ctxt
,

Γ ctxt T type

Γ, x : T ctxt
.

Now T might depend on Γ, so we should change this to:

∅ ctxt
,

Γ ctxt Γ ` T type

Γ, x : T ctxt
.

5.2.1 The types

⊥ type

⊥ type
⊥-formation

Before we had
T type Γ ` f : ⊥

Γ `
Now we need to allow it to depend on the context

Γ, x : ⊥ ` C(x) type Γ ` f : ⊥
Γ ` jc,f : C(f)

⊥-elimination

19

> type

1. >-formation

> type

2. >-introduction

∗ : >
3. >-elimination

Γ, x : > ` C(x) type Γ ` c : C(∗)
Γ, x : > ` jC,c(x) : C(x)

4. >-computation

Γ, x : > ` C(x) type Γ ` c : C(∗)
Γ, x : > ` jC,c(∗) = c : C(∗)

In general, we have these four sorts of rules, describing forming the type, in-
troducing terms of the type, and elimination and computation rules describing
how to break down the type.

The elimination rule says “If you have a predicate C on terms of a type,
then if you want to prove C always holds, then it suffices to prove it just for the
canonical terms of your type.”

Question. We notice that the rules do not say that all elements of > are equal
to the canonical element.

Answer: This is true, and we don’t want this. However, we will soon be able
to prove that they are equal in a different sense.

We want to prove that two terms are equal. In type theory, prove means
construct a term of a type, so we should be constructing a term of an appropriate
type. Let’s define that type now.

5.2.2 The type Id

1. Id-formation
Γ ` T type

Γ, s : T, t : T ` IdT (s, t) type

2. Id-introduction
Γ ` T type

Γ, t : T ` reflt : IdT (t, t)

3. Id-elimination

Γ, s : T, t : T, p : IdT (s, t) ` C(s, t, p) type Γ, t : T ` c(t) : C(t, t, reflt)

Γ, s : T, t : T, p : IdT (s, t) ` j(s, t, p) : C(s, t, p)

4. Id-computation

Γ, s : T, t : T, p : IdT (s, t) ` C(s, t, p) type Γ, t : T ` c(t) : C(t, t, reflt)

Γ, t : T ` j(t, t, reflt) = c(t) : C(t, t, reflt)

20

5.2.3 Relations in sets

We are trying to emulate relations in sets. The idea is that “Equality is the
smallest reflexive relation.”

Given some function/relation R
i−→ X×X, we say that it is reflexive if there

exists r : X → R such that ir = ∆, i.e, if ir(x) = ∆(x) := (x, x).
For example, we have

R→ [≤] ↪→ R× R,

where [≤] = {(x, y) ∈ R× R : x ≤ y}. Then the left hand map is r 7→ (r, r).
The map i produces a family of sets i−1(x, y) indexed by X ×X. If i is an

injection, then these preimages are either empty or contain exactly one element.
We can define equality to be the smallest reflexive relation. I.e., given a set

X, we have the relation,

X
idX−−→ X

∆−→ X ×X,

x 7→ x 7→ (x, x)

Then

∆−1(x, y) =

{
∅ if x 6= y

{x} if x = y.

Given a reflexive relation, we get a function

∆−1(x, y)→ i−1(x, y).

In other words, given a reflexive relation, i : R → X × X, we get a map
f : X → R such that if = ∆. Indeed, this is obvious, f is the map r from the
definition of reflexivity.

5.2.4 Relations in type theory

A relation on T is a type

x : T, y : T ` R(x, y) type.

“Says that s and t are related if there is a term in R(s, t).”
We will say that R is reflexive if

t : T ` ρt : R(t, t).

Now Id is the smallest reflexive relation, in the sense that

x : T, y : T, p : IdT (x, y) `? : R(x, y)

for any reflexive relation R.
We begin with saying R(x, y) is a type,

x : T, y : T, p : IdT (x, y) ` R(x, y) type.

21

Then we know by reflexivity

x : T ` ρx : R(x, x).

Thus we can conclude from the Id elimination rule

x : T, y : T, p : IdT (x, y) ` jρ(x, y, p) : R(x, y),

as desired.

5.2.5 Axiom K or identity reflection rule

We don’t use this anymore, but it was used from the 70s-80s up until about
2000, so it’s important to talk about it.

The rule says

Γ ` T type Γ ` s : T Γ ` t : T Γ ` p : IdT (s, t)

Γ ` s = t : T Γ ` p = refls : IdT (s, t)

This rule is very bad, and it prevents us from doing anything useful in type
theory.

We have two different notions of equality in type theory, sitting at two
different levels. We have the internal equality, Id, and we have the equality
judgement which always implies the Id equality.

People realized that this wasn’t useful. It collapses the identity type to reflect
the equality judgement. However, if we allow the identity type to have richer
structure, by taking away this rule, we can capture a much broader segment of
mathematics more naturally.

Without this rule, the type theory becomes naturally homotopical, whereas
with this rule, we essentially have to build up homotopies from set theory and
topological spaces. More on this in the future.

6 Lecture 6

6.1 Sum Types

If we have a dependent type,

x : S ` T (x) type,

we want to take a union, which we write as a sum:∑
x:S

T (x).

1.
∑

-formation
Γ, x : S ` T (x) type

Γ `
∑
x:S T (x) type

22

2.
∑

-introduction
Γ ` s : S Γ ` t : T (s)

Γ ` (s, t) :
∑
x:S T (x)

3.
∑

-elimination

Γ, z :
∑
x:S T (x) ` C(z) Γ, s : S, t : T (s) ` c(s, t) : C(s, t)

Γ, z :
∑
x:S T (x) ` jc(z) : C(z)

4.
∑

-computation

Γ, z :
∑
x:S T (x) ` C(z) Γ, s : S, t : T (s) ` c(s, t) : C(s, t)

Γ, s : S, t : T (s) ` jc(s, t) = c(s, t) : C(s, t)

Example 6.1. There are two functions

z :
∑
x:S

T (s) ` π1(z) : S,

and
z :
∑
x:S

T (s) ` π2(z) : T (π1(z)).

We need to use the elimination rule. We start with

z :
∑
x:S

T (x) ` S type,

and
s : S, t : T (s) ` s : S,

so by the elimination rule, we can produce

z :
∑
x:S

T (x) ` π1(z) : S.

For π2, we have

z :
∑
x:S

T (x) ` T (π1z) type,

and
s : S, t : T (s) ` t : T (π1(s, t)) = T (s).

Thus by the elimination rule, we have

z :
∑
x:S

T (x) ` π2(z) : T (π1z).

23

Types Sets Logic∑
x:S T (x)

∐
x∈S T (x) To prove

∑
x:S T (x), it suffices to prove T (s) for a spe-

cific s : S. In other words, sum types are like existential
quantifiers. “There exists x : S such that T (x) holds.” In
usual math, proving something exists, doesn’t mean you
can actually find it. For example, if we have a continu-
ous function f : R → R such that limx→∞ f(x) > 0 and
limx→−∞ f(x) < 0. Then T (x) is “f(x) = 0,” and S = R.
Then ∃x:RT (x).

We automatically get ∧-types. Consider two types ` S type and ` T type,
then we can derive

x : S ` T type,

so we can conclude from
∑

-formation,

`
∑
x:S

T type.

Then
` s : S ` t : T

` (s, t) :
∑
x:S T

,

is our ∧-introduction rule. For wedge-elimination, we already have

` z :
∑
x:S T

` π1z : S

` z :
∑
x:S T

` π2(z) : T
.

Finally, ∧-computation follows from the
∑

-computation rule.
The

∑
-type of a dependent type, x : S ` T , where T depends on S only

trivially is an ∧-type.

6.2 Fibers

In set theory, we had

{families indexed by B} ←→ {functions with codomain B}.

In type theory, we want a correspondence

{types dependent on B} ←→ {Functions with codomain B, x : A ` a(x) : B}.

We don’t have nearly enough to prove this yet. Suppose we have a dependent
type, b : B ` E(b). Then we have

z :
∑
b:B

E(b) ` π1(z) : B,

which is the thing we want on the right hand side.

24

Can we go the other way? In set theory, what happens when we have a
function with codomain B and want to produce a family indexed by B? We
have

E
f−→ B,

and we get
f−1(b) = {e ∈ E|fe = b}.

We can’t do this in type theory. In set theory, we have logic and the set
theory as two different layers. The set theory is built on top of the logic. On
the other hand, in type theory, everything is a type, and there is only one layer.
Thus we need to reformulate this in type theory.

Define a set

[fe = b] =

{
{e} if fe = b

∅ if fe 6= b.

Then we could define f−1(b) =
⊔
e∈E [fe = b]. This contains an e if and only

if fe = b.
Now this is something that we can emulate in type theory. In the type

theory, if we have e : E ` f(e) : B, then we define

f−1(b) :=
∑
e:E

IdB(fe, b).

The canonical terms in this type are (e, p), where p is a witness to the equality
of f(e) and b.

Now, we can write

b : B `
∑
e:E

IdB(fe, b).

This should be inverse to the previous process, but we don’t yet have enough
to prove that.

6.3 Unions

The
∑

-type also generalizes the ∨-type that we had before. The
∑

-types are
unions of types T (x) indexed by S. To get a twofold union, we need S to have
two elements.

The type with two terms was defined on the first homework, B, with the
following rules.

1. B-formation

B type

2. B-introduction

0 : B 1 : B

25

3. B-elimination

Γ, b : B ` C(b) type Γ ` c0 : C(0) Γ ` c1 : C(1)

Γ, b : B ` jc0,c1(b) : C(b)

4. B-computation

Γ, b : B ` C(b) type Γ ` c0 : C(0) Γ ` c1 : C(1)

Γ ` jc0,c1(0) = c0 : C(0) Γ ` jc0,c1(1) = c1 : C(1)

In dependent type theory, we assume that every type is a term of a universe,
which is a type. Actually, there is a hierarchy of universes U1, U2, With
each universe a term of the next, and all the terms of Ui a term of Ui+1. This
is the first time we’ve said that a term is of more than one type, but this is
something that can be addressed in several ways.

We’ll ignore this for now, and just talk about a universe U .
Now we have

b : B ` U type,

and
` S : U ` T : U,

so by B-elimination, we have

b : B ` jS,T (b) : U.

Then by
∑

-formation, we have

`
∑
b:B

jS,T (b)

Then given ` s : S, we have

` (0, s) :
∑
b:B

jS,T (b).

Similarly, given ` t : T , we can form

` (1, t) :
∑
b:B

jS,T (b).

These give us our ∨-introduction rules.

7 Lecture 7

7.1 Product Types

Generalize the function type.

26

7.1.1 In Sets:

For a one element set 1 = {∗}, and a set X we have

{elements of X} ←→ {functions 1 = {∗} → X} ←→ X ←→
∏
x∈{∗}

X.

For a two element set, 2, and a set X, we have

{ordered pairs of X} ←→ {functions 2→ X} ←→ X ×X ←→
∏
x∈2

X.

Then

{sequences in X} ←→ {functions N→ X} ←→ XN ←→
∏
x∈N

X.

One way to think of functions is as tuples. For functions A → X, we can
think of these as tuples in X whose entries are labeled elements of A.

If we have an indexed family E(b) over B, then we can form∏
b∈B

E(b),

the set of generalized tuples x, where xb ∈ E(b).
This is in bijection with subsections of the map

π :
∐
b∈B

E(b)→ B.

A subsection of the map π is a map

s : B →
∐
b∈B

E(b)

such that πs = 1B . In other words, s(b) ∈ π−1(b) for all b.
This is the concept that we want to generalize in type theory. If E is trivially

indexed by B, then∏
b∈B

E ' {∗}subsections of
∐
b∈B

E ' B × E → B ' hom(B,E).

This is the sense in which we are generalizing functions.

7.2 Π-types

We start with the rules for Π-types.

1. Π-formation
Γ ` B : U Γ, x : B ` E(x) : U

Γ `
∏
x:B E(x) : U

27

2. Π-introduction
Γ, x : B ` e(x) : E(x)

Γ ` λx.e(x) :
∏
x:B E(x)

3. Π-elimination
Γ ` f :

∏
x:B E(x) Γ ` b : B

Γ ` fb : E(b)

4. Π-computation

Γ, x : B ` e(x) : E(x) Γ ` b : B

Γ ` (λx.e(x))b = e(b) : E(b)

5. Π-uniqueness
Γ ` f :

∏
x:B E(x)

Γ ` λx.fx = f :
∏
x:B E(x)

7.2.1 ∧-types

We can form ∧-types out of Π-types in the exact same way as we form ∨-types
from Σ-types.

We have
` S0 : U ` S1 : U,

so
b : B ` S(b) : U.

Then
`
∏
b:B

S(b) : U.

Then if ` s0 : S0, ` s1 : S1, b : B ` s(b) : S(b), and we have

` λb.s(b) :
∏
b:B

S(b).

Lastly, we get the π1, π2 maps as

` p :
∏
b:B S(b)

` p0 : S(0) ` p1 : S(1)

We’ll denote S0 ∧S1 by S0×S1 from now on, as we’re a bit more interested
in the set interpretation than the logic interpretation.

28

7.2.2 =⇒ -types

Starting with types ` S : U and ` T : U , we have x : S ` T : U , and we can
form

`
∏
x:S

T : U.

Then we have
x : S ` f(x) : T

` λx.f(x) :
∏
x:S T

.

From now on, we’ll write this as→, since, once again, the set interepretation
is somehow closer to what we’re doing now.

7.2.3 Logic interpretation

To prove
∏
x:S T (x), we have to prove T (x) for all x : S. Looks like ∀x:ST (x).

“For all x ∈ S, T (x) holds.”
As with the Σ-type/∃ correspondence, this product ∀ type is somehow

stronger than the logic ∀.
Life hack. Read Π as ∀, and Σ as ∃. This will make formulas in type theory

make much more sense to you.

7.3 Returning to Id-types.

They form an equivalence relation. A relation on T is a dependent type s : T, t :
T ` R(s, t) : U . We can think of a relation as a function R : T × T → U .

In type theory, and functional programming, it is often better to instead
think about R : T → (T → U). These two types are equivalent in a way that
we can’t really talk about yet.

We can define the type of relations on T .

Rel(T) := T → T → U.

Note that we are not writing parentheses. Functions types are assumed to
associate to the left. Then

T : U ` Rel(T) = T → T → U : U.

Given a : T and b : T , we have

IdT (a, b) : U.

This gives us a dependent type

x : T, y : T ` IdT (x, y) : U.

Lambda abstracting gives us

x : T ` λy.IdT (x, y) :
∏
y:T

U,

29

and again, we have

` λx.λy.IdT (x, y) :
∏
x:T

∏
y:T

U.

As mentioned before, we’ll write this last type as T → T → U = Rel(T). We’ll
call this term IdT := λx.λy.IdT (x, y).

How do we show that something is reflexive? We want to define a type isRefl
so that the type being inhabited corresponds to a proof of reflexivity:

T : U,R : Rel(T) ` isRefl(R) : U

s, t : T ` R(s, t) : U

t : T ` reflt : R(t, t) ` λt.reflt :
∏
t:T

Rel(t, t).

This last type should be our predicate isRefl:

isRefl(R) :=
∏
t:T

R(t, t).

Then to prove that Id is reflexive, we have

T : U, t : T ` λt.reflt :
∏
t:T

Id(t, t),

and this type is precisely isRefl(Id).
Now for symmetry, once again, we want to define a predicate type isSym(R).

Translating from logic, it should be

isSym(R) :=
∏
s,t:T

R(s, t)→ R(t, s).

Now let’s prove that IdT is symmetric. we start with s, t : T, p : IdT (s, t) `
IdT (t, s) : U . Now t : T ` reflt : IdT (t, t), so by the elimination rule for the
identity type,

s, t : T, p : IdT (s, t) ` jreflt
(s, t, p) : IdT (t, s) : U.

Then by lambda abstracting, we get

` λs, t, p.jreflt(s, t, p) :
∏
s,t:T

∏
p:IdT (s,t)

IdT (t, s) = isSym(R).

Finally, we just need to prove transitivity. This time the type should be∏
r,s,t:T

R(r, s)→ R(s, t)→ R(r, t).

Now we prove that the identity type is transitive. We start with r, s, t : T ,
p : IdT (r, s), q : IdT (s, t), and we want to get IdT (r, t).

30

It suffices to prove

t : T, r, s : T, p : IdT (r, s) `? : IdT (s, t)→ IdT (r, t) : U.

t : T ` λx.x : IdT (r, t)→ IdT (r, t),

so if we have

t : T, r, s : T, p : IdT (r, s) ` jλx.x(t, r, s, p) : IdT (s, t)→ IdT (r, t)

then we can lambda abstract, getting

λr, s, t, p.jλx.x(t, r, s, p) :
∏
r,s,t

IdT (r, s)→ IdT (s, t)→ IdT (r, t) = isTrans(IdT).

Lastly, we can define an equivalence relation in the type theory, we can define

T : U,R : Rel(T) ` isEquivRel(R) := isRefl(R)× isSym(R)× isTrans(R) : U.

Then we have
T : U ` ((r, s), t) : isEquivRel(IdT).

8 Lecture 8

8.1 Identity terms in Σ-types

Last time, we constructed

f :
∏

s,s′:
∑

x:B E(x)

Id(s, s′)→
∑

p:Id(π1s,π1s′)

Id(p∗π2s, π2s
′)

 .
By Σ-elimination, we can assume that s = (b, e), s′ = (b′, e′) are canon-

ical. By Id-elimination, it suffices to define the function on canonical terms
of the identity type, refl(e,b). Then constructing this function is equivalent to
producing ∏

b:B,e:E(b)

∑
p:Id(b,b)

Id(p∗e, e).

Undoing the Π, we want to produce

b : B, e : E(b) `
∑

p:Id(b,b)

Id(p∗e, e).

I.e., we want to produce a pair (p, q), with p : Id(b, b), q : Id(p∗e, e). We can take
p = reflb, then p∗e = e by definition, so we can produce q = refle : Id(e, e) =
Id(p∗e, e). Thus (reflb, refle) is in the sum type.

Assuming terms are canonical is often called induction, since in the natural
numbers, defining a function out of N by specifying where the canonical terms
0 : N, sn : N go is induction.

31

Now we want to construct maps in the other direction:

g :
∏

s,s′:
∑

x:B E(x)

 ∑
p:Id(π1s,π1s′)

Id(p∗π2s, π2s
′)

→ Id(s, s′)


Want

s, s′ :
∑
x:B

E(x), t :
∑

p:Id(π1s,π1s′)

Id(p∗π2s, π2s
′) `? : Id(s, s′).

Induct on t, so assume we have (p, q), with p : Id(π1s, π1s
′), q : Id(p∗π2s, π2s

′).
It suffices to construct

s, s′ :
∑
x:B

E(x), p : Id(π1s, π1s
′), q : Id(p∗π2s, π2s

′) `? : Id(s, s′)

Then inducting on s, s′, it suffices to prove

b, b′ : B, e : E(b), e′ : E(b′), p : Id(b, b′), q : Id(p∗e, e
′) `? : Id((b, e), (b′, e′)).

Can’t induct on q, since p∗e is not free essentially. However, we can induct on
p, so it suffices to prove

b : B, e, e′ : E(b), q : Id(e, e′) `? : Id((b, e), (b, e′)).

Now we may induct on q. It now suffices to construct

b : B, e : E(b) `? : Id((b, e), (b, e)).

However, we can now construct this term. It is refl(b,e).
Question: If we were to write out the logic using the rules we’ve gotten, the

flow of logic would go from bottom to top? Yes. But day to day, this is how we
write proofs in type theory. But we could write out the term. If we wrote out
the resulting term, we would get something like

λs, s′.λt.jjrb,e (s, s′, t)

To show that we have a quasiequivalence term in∏
s,s′:

∑
x:B E(x)

(gs,s′ ◦ fs,s′ ∼ 1)

we expand out the type, to get that we need to construct a term of type∏
s,s′:

∑
x:B E(x)

∏
u:Id(s,s′)

Id(g(f(u)), u).

Induct on u. We need ∏
s:
∑

x:B E(x)

Id(g(f(refls)), refls).

32

Recall that f(refls) = (reflπ1s, reflπ2s), and g(reflb, refle) = refls. Thus g(f(refls)) =
refls. Then

λs.reflrefls
:

∏
s:
∑

x:B E(x)

Id(refls, refls).

Now we want to go the other way, and construct∏
t,t′:Σ

(ft,t′ ◦ gt,t′ ∼ 1),

where Σ is the sum type in the domain of g. Unfold the homotopy (∼) type∏
t,t′:Σ

∏
t:Σ

Id(f(g(t)), t)

Induct on s, s′, t to get that we need∏
b,b′:B

∏
e:E(b)

∏
e′:E(b′)

∏
p:Id(b,b′)

∏
q:Id(p∗e,e′)

Id(f(g(p, q)), (p, q)).

Induct on p, so we now need∏
b:B

∏
e,e′:E(b)

∏
q:Id(e,e′)

Id(f(g(reflb, q)), (reflb, q)).

Inducting on q, we now want∏
b:B

∏
e:E(b)

Id(f(g(reflb, refle)), (reflb, refle)).

As before g(reflb, refle) = refl(b,e), and f(refl(b,e)) = (reflb, refle). Thus this last
type contains the term

refl(reflb,refle)

We have now constructed a term in∏
s,s′:

∑
x:B E(x)

Id(s, s′) '
∏

p:Id(π1s,π1s′)

Id(p∗π2s, π2s
′).

8.2 Identity terms in Π-types

Given f, g :
∏
x:B E(x) ` Id(f, g). We have both Id(f, g) : U and f ∼ g : U .

We’d like to say that these are equivalent types.
However, we can’t prove this. There are models of type theory for which this

is false. So we can’t prove this. Thus we postulate this, since it’s reasonable to
assume. We assume that we have a term

FunExt : Id(f, g) ' (f ∼ g).

This is an axiom.

33

9 Lecture 9

9.1 Identity types

Last time we talked about identity terms in Σ-types, and we gave an explicit
description. Can we do this for other types? Unfortunately, in general this isn’t
possible for the other types. There are models of type theory, in which the
things we’d want to be the same aren’t the same. So we postulate this for our
type theory, since we don’t care about those models.

9.1.1 Π types

Id∏
x:B E(x)(f, f

′) '?

We already talked about homotopy,

f ∼ f ′ :=
∏
x:B

Id(fx, f ′x).

We have
idToHo :

∏
f,f ′:

∏
x:B E(x)

Id(f, f ′)→ (f ∼ f ′).

How does this work? By induction, we need to produce∏
f :
∏

x:B E(x)

(f ∼ f) =
∏
f

∏
x:B

Id(fx, fx),

and we already have a term in this last type,

λf, x.reflfx.

We would hope that there is a function in the other direction. I.e., we want
a term of type

isEquiv(idToHo).

This doesn’t exist in general, so we postulate the existence of such a term,

FunExtf,f ′ : isEquiv(idToHof,f ′).

This is called function extensionality.
If you are interested in bad models, which don’t satisfy this, you can check

out: von Glehn. Dialectica Models of TT.

9.1.2 Id types

We could postulate the following:

UIP : IdId(s,t)(p, q) ' >

UIP stands for uniqueness of identity proofs. However, we definitely don’t
assume this one. It’s not equivalent to assuming axiom K that we talked about
before, but it’s morally the same, so we don’t want to assume this either.

34

9.1.3 U types

IdU (S, T) '?

Should ? be S ' T?
Just like with Π-types, we can produce a map

idToEquiv :
∏
S,T :U

IdU (S, t)→ (S ' T).

We can postulate
UA : isEquiv(idToEquiv),

and this axiom is called the univalence axiom.
Univalence implies function extensionality. However, univalence and unique-

ness of identity proofs are incompatible. If you assume both, you can prove false.

9.2 Programs

Mathematicians and theoretical CS people are interested in the following two
programs.

9.2.1 Univalent foundations

1. It’s a new foundation of mathematics.

2. It can be formalized/computer-checked.

3. Dependent type theory with Σ, Π, Id, >, ⊥, B, N, UA, propositional
truncation, and propositional resizing. (These last two we haven’t seen,
and we won’t talk about the last, since it’s not clear that it’s consistent).

4. Invented by Vladimir Voevodsky. He won a Fields medal for work in
motivic homotopy theory. His proofs were found to have a lot of holes,
though he managed to fix the ones found in his Fields medal work.

5. UniMath (GitHub)

9.2.2 Homotopy Type Theory

1. Basically the same, but not purporting to be a new foundation for math-
ematics.

2. DTT with Σ, Π, Id, certain (higher) inductive types, and univalence.

3. Emphasizes the connections between the type theory and classical homo-
topy theory.

35

9.3 h-levels

h stands for homotopy. Consider a type T . It has the terms r, s, t : T . Think of
T as a space, with r, s, t points in the space. It has the paths p, q : Id(s, t). I.e.,
terms of the identity type represent paths between the points in the space. It
also has paths α, β : Id(p, q). We can think of these as deformations of paths in
the space. I.e., these are homotopies of paths.

Write Id(s, t) as s = t, and s = t as s ≡ t now.
Stratify types into their homotopy levels.

Level 0: Types ' >.

Level 1: Types ' ⊥ or >.

Level 2: Types that look like sets. (Types with terms)

Level 3: Types that look like graphs. (groupoids) (Types with terms and paths,
but no paths between paths)

Level 4: 2-groupoids.

Now let’s be rigorous.

9.3.1 h-level 0 (contractible)

Some people say that this is level −2 to make the numbering work out with the
way we number groupoids.

T : U ` isContr(T) : U,

where
isContr(T) :=

∑
t:T

∏
s:T

t = s.

Proposition 9.1. > is contractible.

Proof. Take ∗ : >, then we want ? :
∏
x:> ∗ = x. By induction, we can assume

x ≡ ∗ by the elimination rule for >. Then we have refl∗ : ∗ = ∗. This gives us
jrefl∗ :

∏
x:> ∗ = x, as desired.

Thus up to homotopy, > is a one point space.

Proposition 9.2. We have a map isContr(S) → (S ' >) (actually this is an
equivalence).

Proof. Consider (t, p) : isContr(S), where t : S, and p :
∏
x:S t = x. There is a

function g : S → >, given by λs.∗. There is a function f : > → S by ∗ 7→ t.
We have g ◦ f ∼ id> :=

∏
x:> gfx = x, which by induction, we can prove by

proving on the canonical term, ∗. On the canonical term, we have gf∗ ≡ gt ≡ ∗,
and so we have refl∗ : gf∗ = ∗.

36

Now we need to prove f ◦ g ∼ idS :=
∏
x:S fgx = x. However, gx ≡ ∗, and

f∗ ≡ t, so fgx ≡ t. Then p is already of this type. I.e., by definition, we have
p :
∏
x:S fgx = x.

This completes the proof.

HW: Consider a dependent type, b : B ` E(b) : U such that b : B ` c(b) :
isContr(E(b)), then ∑

b:B

E(b) ' B.

This generalizes a problem on HW3, where we prove∑
b:B

> ' B.

Proposition 9.3. Given f : A→ B,

isEquiv(f) '
∏
b:B

isContr

(∑
a:A

fa = b

)
I.e., f being an equivalence is equivalent to all the fibers of f being con-

tractible.

Proposition 9.4. For any type T , and t : T , the type∑
u:T

t = u

is contractible.
Note that this is an English translation of the type theory statement:

T : U, t : T `? : isContr

(∑
u:T

t = u

)
Topologically (roughly), this is the statement that the universal cover of a

path connected space is simply connected. Note that we have a point in this
space for every path out of t.

Proof. Center of construction, (t, reflt).∏
s:
∑

u:T t=u

((t, reflt) = s) '
∑

p:t=π1s

(p∗reflt = π2s)

HW: prove that we have reflreflt : reflt,∗reflt = reflt by showing reflt,∗reflt ≡
reflt.

10 Lecture 10

Last time we talked about contractibility (level 0), and we defined

isContr(T) :=
∑
t:T

∏
s:T

s = t.

37

10.1 Propositions (h level 1)

This time we will talk about propositions.

Definition 10.1.
T : U ` isProp(T) : U,

where
isProp(T) :=

∏
s,t:T

isContr(s = t).

This roughly means that T is a proposition if and only if T ' ⊥ or T ' >.
(This isn’t strictly true. We would need law of excluded middle to prove it.)

Proposition 10.1. If T ' ⊥, then T is a proposition. If t : T and T is a
proposition, then T ' >.

Proof. We begin by showing ⊥ is a proposition.

isProp(⊥) =
∏
x,y:⊥

isContr(x = y).

Then by ⊥-elimination, there is always a dependent function out of bottom into
any type. Thus isProp(⊥) is true.

Suppose we have t : T, p : isProp(T). We want to construct a pair of a term
t : T , and an element of

∏
s:T s = t. We already have a t : T , and we have

p : isProp(T) :=
∏
s,t:T

isContr(s = t).

Then
pt :

∏
s:T

isContr(s = t).

Then
λs.π1(pts) :

∏
s:T

s = t

is our desired term.

Why do we consider propositions?
Consider a dependent type, b : B ` E(b). For example, n : N ` isEven(n) :

U . Then we might want to define the ‘subtype’ of B consisting of all b : B such
that E(b) is inhabited. In set theory, we can just form

{b ∈ B | E(b)}.

In type theory on the other hand, the closest thing we can produce is the Σ-type:∑
b:B

E(b).

38

Then we might define the type of even natural numbers to be

E :=
∑
n:N

isEven(n).

Now we might run into a problem if our predicate is very complicated, for
example, we might have many proofs of E(b), then∑

b:B

E(b)

might be very complicated, and not behave like a subtype.
However if each of E(b) is a proposition, then it will behave like a subtype

should behave. For example,

n : N ` isEven(n) :=
∑
m:N

2m = n.

is a proposition.

Proposition 10.2. Consider b : B ` E(b), together with

b : B ` p(b) : isProp(E(b)).

If we have

s, t :
∑
b:B

E(b)

such that π1s = π1t, then s = t.

Proof. Consider q : π1s = π1t. We know

s = t '
∑

a:π1s=π1t

a∗π2s = π2t

We already have q : π1s = π1t. We now just need to find something of type
q∗π2s = π2t. This is an identity type between terms of E(π1t). However, we
know that E(π1t) is a proposition, so q∗π2s = π2t is contractible. It is therefore
inhabited by some term c. Then (q, c) is a term in our sum type.

Side note, once again, recall that all English statements are just translations
of type theoretical statements. The proposition above is the following statement

B : U,E : B → U, p :
∏
b:B

isProp(E(b)), s, t :
∑
b:B

E(b), q : π1s = π1t `? : s = t : U.

Proposition 10.3. isEquiv(f), isContr(T), isProp(T) are always propositions.
isQEquiv is not a proposition generally. (This is why we say that equivalences
are better behaved than quasiequivalences.)

Example 10.1. ∑
f :A→B

isEquiv(f) “ ⊂ ” A→ B

39

10.2 Sets (h level 2)

Definition 10.2.
T : U ` isSet(T) : U,

where
isSet(T) :=

∏
s,t:T

isProp(s = t)

Picture: We think of T as a space, with terms r, s, t being points of the
space. Then we might have p, q : s → t paths. The space of paths is either
empty or contractible. So if p and q are both paths, then we have a term of the
identity type p = q.

Example 10.2 (Groups).

Group :=
∑
G:U

∑
p:isSet(G)

∑
m:G×G→G

∑
e:G

∑
i:G→G ∏

a,b,c:G

m(a,m(b, c)) = m(m(a, b), c)


×

∏
g:G

m(g, e) = g ×m(e, g) = g


×

∏
g:G

m(g, ig) = e×m(ig, g) = e


Now we need G to be a set. All identity types are propositions. This tells

us that the equalities we impose are forming a nice subtype.
If G were not a set, then we might need equalities between our equalities

and equalities between all the equality equalities and so on. We’d need infinitely
many equalities, which would be bad.

Proposition 10.4. ⊥, >, B, N are sets.

10.3 h-levels

Definition 10.3. T : U, n : N ` isnType(n, T) : U , where

isnType(n, T) :=


isnType(0, T) := isContr(T)

isnType(sn, T) :=
∏
s,t:T

isnType(n, s = t)

40

10.3.1 Topology

π0(X) is the set of path-connected components. If X = T2 t T2, then π0(T2 t
T2) = 2, and π1(T2) = Z× Z. We also have π2(X), π3(X), and so on.

Being contractible is πn(X) = ∗. Being proposition is π0(X) ∈ {0, 1} and
πn(X) = ∗ for n > 0. Being a set means π0 can be anything, and πn(X) = ∗
for n > 0. Being a 3-type means π0(X), π1(X) can be anything πn(X) = ∗ for
n > 1.

This gives us a stratification of types and a way to measure their complexity.

Proposition 10.5. If T is an n-type, then T is an n+ 1-type.

Proof. Induct on n. n = 0. Suppose T is a 0-type, so we have

c : isContr(T) :=
∑
t:T

∏
s:T

(t = s).

We need to show
isProp(T) :=

∏
s,s′:T

isContr(s = s′).

Fix s, s′. Since we have c = (t, p), we get p(s) : t = s and p(s′) : t = s′. Then
we have p(s)−1 · p(s′) : s = s′. Now we have∏

s,s′:T

∏
q:s=s′

p(s)−1 · p(s′) = q.

Then we induct on q. Thus we just need to show∏
s:T

p(s)−1 · p(s) = refls.

Let’s quickly prove p−1 · p = refls for all paths p. Induct on p, then we want to
show

refl−1
s · refls = refls,

but this is true by definition of inverses and path composition for reflexivities.
So we have a term in∏

s,s′:T

isContr(s = s′) =: isProp(T).

Now the inductive step. Want to show that

isnType(n, T)→ isnType(sn, T).

By definition,

isnType(sn, T) :=
∏
x,y:T

isnType(n, x = y).

Then by the induction, we have `n,x=y : isnType(n, x = y) → isnType(sn, x =
y). Then composing this with p : isnType(n, T), we obtain a term of isnType(sn, T).

41

Corollary 10.1. > is a proposition, set. ⊥ is a set.

Proposition 10.6. B is a set.

Proposition 10.7. If we have B and the univalence axiom, then U is not a
set. Indeed, it is not an n-type for any n.

42

	Lecture 1
	Basics
	A first type theory: The Simply Typed Lambda Calculus
	Things we can do!

	Lecture 2
	Contexts
	Simply Typed Lambda Calculus Again
	Free and bound variables

	Lecture 3
	And Types
	Philosophy
	Disjunction: -types
	Bottom and Top

	Lecture 4
	Set interpretation of type theory
	Natural Numbers
	Examples of using the function construction rule for the natural numbers

	The list type

	Lecture 5
	Dependent Type Theory
	Definition of Dependent Type Theory
	The types
	The type Id
	Relations in sets
	Relations in type theory
	Axiom K or identity reflection rule

	Lecture 6
	Sum Types
	Fibers
	Unions

	Lecture 7
	Product Types
	In Sets:

	-types
	-types
	-3mu-types
	Logic interpretation

	Returning to Id-types.

	Lecture 8
	Identity terms in -types
	Identity terms in -types

	Lecture 9
	Identity types
	 types
	Id types
	U types

	Programs
	Univalent foundations
	Homotopy Type Theory

	h-levels
	h-level 0 (contractible)

	Lecture 10
	Propositions (h level 1)
	Sets (h level 2)
	h-levels
	Topology

