An introduction to univalent foundations and the equivalence principle

Paige Randall North
University of Pennsylvania

28 March 2022

Outline

(1) Background on type theory and univalent foundations
(2) The univalence principle ${ }^{1}$

[^0]
Outline

(1) Background on type theory and univalent foundations

(2) The univalence principle ${ }^{2}$

[^1]
Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics:

Categorical notions
Set theory
First-order logic

Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics:
Mathematics à la Martin-Löf:

Categorical notions
Set theory
।
First-order logic

Type theory

Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics:
Mathematics à la Martin-Löf:

Type theory's beginnings

- 1970s: Martin-Löf introduces his type theory
- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics:
Mathematics à la Martin-Löf:
Homotopical mathematics

What does type theory look like?

- In mathematics, statements look like the following:
- Consider a natural number n. The sum $n+n$ is even.
- Consider a space X. The cone on X is contractible.
- In type theory, we write this as
- $n: \mathbb{N} \vdash e(n):$ isEven $(n+n)$
- X : Spaces $\vdash c(X)$: isContr $(C X)$
- Type theory provides:
- natural numbers type \mathbb{N}
- product type $A \times B$
- sum type $A+B$
- function type $A \rightarrow B$
- a universe type Type
- a type (!) of equalities $a={ }_{A} b$
- etc

Interpretations of type theory into classical mathematics

Classical mathematics:
Mathematics à la Martin-Löf:

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

- Everything in type theory respects equality
- This is the definition of equality in type theory (roughly)

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

- Everything in type theory respects equality
- This is the definition of equality in type theory (roughly)
- Mathematics in type theory
+ Interpretation into X s where equality is interpreted by Y
\rightsquigarrow Mathematics in X s up to Y

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

- Everything in type theory respects equality
- This is the definition of equality in type theory (roughly)
- Mathematics in type theory
+ Interpretation into X s where equality is interpreted by Y
\rightsquigarrow Mathematics in X s up to Y

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Categories	objects	\times	\cong
Spaces	points	\times	\sim

- Everything in type theory respects equality
- This is the definition of equality in type theory (roughly)
- Mathematics in type theory
+ Interpretation into X s where equality is interpreted by Y
\rightsquigarrow Mathematics in X s up to Y

Interpretations of type theory into classical mathematics

Types	Terms	Product	Equality
Propositions	proofs	\wedge	$=$
Sets	elements	\times	$=$
Groupoids	objects	\times	\cong
Spaces	points	\times	\sim

- Everything in type theory respects equality
- This is the definition of equality in type theory (roughly)
- Mathematics in type theory
+ Interpretation into X s where equality is interpreted by Y
\rightsquigarrow Mathematics in X s up to Y

Different notions of equality

Synthetic vs. analytic equalities

In type theory with the equality type, we always have a ("synthetic") equality type between $a, b: D$

$$
a={ }_{D} b .
$$

Depending on the type D, we might also have a type of "analytic" equalities

$$
a \simeq_{D} b .
$$

A univalence principle for this D and this \simeq_{D} states that

$$
\left(a={ }_{D} b\right) \rightarrow\left(a \simeq_{D} b\right)
$$

is an equivalence.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftrightarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a={ }_{D} b\right) \leftrightarrow\left(\prod_{P: D \rightarrow \text { Type }} P(a) \simeq P(b)\right)
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a={ }_{D} b\right) \leftrightarrow\left(\prod_{P: D \rightarrow \mathrm{Type}} P(a) \simeq P(b)\right)
$$

- This holds in type theory.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a={ }_{D} b\right) \leftrightarrow\left(\prod_{P: D \rightarrow \mathrm{Type}} P(a) \simeq P(b)\right)
$$

- This holds in type theory.
- Given a univalence principle $\left(a={ }_{D} b\right) \simeq\left(a \simeq_{D} b\right)$, we find an equivalence principle:

$$
\left(a \simeq_{D} b\right) \rightarrow\left(\prod_{P: D \rightarrow \mathrm{Type}} P(a) \simeq P(b)\right)
$$

Univalence

- We've seen that equality in type theory can be interpreted as notions weaker than classical equality (e.g. isomorphism, paths).
- Voevodsky imported weakness for equality from the interpretation in spaces into type theory by imposing the Univalence Axiom (UA):

The canonical function $\left(A=_{\text {Type }} B\right) \rightarrow(A \simeq B)$ is an equivalence of types, for any types A and B.

- UA is validated by the interpretation into spaces, but not into propositions, sets, or groupoids.
- Instead we internalize these notions.

Internalization of classical mathematics into type theory

Classical mathematics: Mathematics à la Martin-Löf:

Internalization of classical mathematics into type theory

Classical mathematics:
Mathematics à la Martin-Löf:

Univalent mathematics

- If two types A, B are propositions,

$$
(A \simeq B) \simeq(A \leftrightarrow B)
$$

Univalent mathematics

- If two types A, B are propositions,

$$
\left(A=_{\operatorname{Prop}} B\right) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

Univalent mathematics

- If two types A, B are propositions,

$$
(A=\operatorname{Prop} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

- If A, B are sets,

$$
(A=\mathrm{Set} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \cong B)
$$

so everything respects bijection of sets.

Univalent mathematics

- If two types A, B are propositions,

$$
(A=\operatorname{Prop} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

- If A, B are sets,

$$
(A=\mathrm{Set} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \cong B)
$$

so everything respects bijection of sets.

- For types A, B which are structured sets (groups, rings, etc),

$$
(A=\operatorname{Grp} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \cong B)
$$

so everything respects isomorphism of groups (or rings, etc). ${ }^{3}$

[^2]
Univalent mathematics

- If two types A, B are propositions,

$$
(A=\operatorname{Prop} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

- If A, B are sets,

$$
(A=\mathrm{Set} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \cong B)
$$

so everything respects bijection of sets.

- For types A, B which are structured sets (groups, rings, etc),

$$
(A=\operatorname{Grp} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \cong B)
$$

so everything respects isomorphism of groups (or rings, etc). ${ }^{3}$

- For univalent categories A, B,

$$
(A=\mathrm{UCat} B) \stackrel{U A}{\simeq}(A \simeq B) \simeq(A \simeq B)
$$

so everything respects equivalence of univalent categories. ${ }^{4}$

[^3]
Univalent mathematics

- Voevodsky dreamt of 'univalent mathematics' in which

$$
\left(A=_{\mathrm{D}} B\right) \simeq\left(A \simeq_{\mathrm{D}} B\right)
$$

where D is any type of mathematical object (propositions, sets, groups, categories, ∞-categories, etc) and \simeq_{D} is the appropriate notion of 'sameness' for that type of objects.

- This would give us an appropriate language in which to study D.

Outline

(1) Background on type theory and univalent foundations

(2) The univalence principle ${ }^{5}$

[^4]
Signatures

Structures

- Morally, an \mathcal{L}-structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.

Structures

- Morally, an \mathcal{L}-structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an \mathcal{L}-structure fiberwise.

Structures

- Morally, an \mathcal{L}-structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an \mathcal{L}-structure fiberwise.
- An $\mathcal{L}_{\mathrm{Cat}^{-} \text {-structure } \mathcal{C} \text { consists of: }}$

Structures

- Morally, an \mathcal{L}-structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an \mathcal{L}-structure fiberwise.
- An $\mathcal{L}_{\text {Cat }^{-} \text {-structure } \mathcal{C} \text { consists of: }}$

$\mathcal{L}_{\text {Cat }}$
- $\mathcal{C} O$: Type
- $x, y: \mathcal{C} O \vdash \mathcal{C} A(x, y)$: Type
- $x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash \mathcal{C} I_{x}(f):$ Type
- $x, y, z: \mathcal{C} O, f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h:$
$\mathcal{C} A(x, z) \vdash \mathcal{C} T_{x, y, z}(f, g, h):$ Type
- $x, y: \mathcal{C} O, f, g: \mathcal{C} A(x, y) \vdash \mathcal{C} E_{x, y}(f, g):$ Type
- Then we add axioms.

Level-wise equivalence

Proposition

For two \mathcal{L}-structures S, T,

$$
\left(S=\mathcal{L}_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right)
$$

where $\cong_{\mathcal{L}-S \text { tr }}$ denotes levelwise equivalence.

Level-wise equivalence

Proposition

For two \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right)
$$

where $\cong_{\mathcal{L}-S \text { tr }}$ denotes levelwise equivalence.
A levelwise equivalence $\mathcal{C} \cong \mathcal{L}_{\mathrm{Cat}^{-}-\operatorname{Str}} \mathcal{D}$ consists of:

- $e_{O}: \mathcal{C O} \xrightarrow{\sim} \mathcal{D O}$
- $x, y: \mathcal{C} O \vdash e_{A}: \mathcal{C} A(x, y) \xrightarrow{\sim} \mathcal{D}\left(e_{O} x, e_{O} y\right)$
- $x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash e_{I}: \mathcal{C} I_{x}(f) \xrightarrow{\sim} \mathcal{D} I_{e_{O} x}\left(e_{A} f\right)$
- $x, y, z: \mathcal{C} O, f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z) \vdash$ $\mathcal{C} T_{x, y, z}(f, g, h) \xrightarrow{\sim} \mathcal{D} T_{e_{O} x, e_{O} y, e_{O} z}\left(e_{A} f, e_{A} g, e_{A} h\right)$
- $x, y: \mathcal{C} O, f, g: \mathcal{C} A(x, y) \vdash \mathcal{C} E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C} E_{e_{O} x, e_{O} y}\left(e_{A} f, e_{A} g\right)$

Level-wise equivalence

Proposition

For two \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right)
$$

where $\cong_{\mathcal{L}-S \text { tr }}$ denotes levelwise equivalence.
A levelwise equivalence $\mathcal{C} \cong \mathcal{L}_{\mathrm{Cat}^{-}-\operatorname{Str}} \mathcal{D}$ consists of:

- $e_{O}: \mathcal{C O} \xrightarrow{\sim} \mathcal{D O}$
- $x, y: \mathcal{C} O \vdash e_{A}: \mathcal{C} A(x, y) \xrightarrow{\sim} \mathcal{D}\left(e_{O} x, e_{O} y\right)$
- $x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash e_{I}: \mathcal{C} I_{x}(f) \xrightarrow{\sim} \mathcal{D} I_{e_{O} x}\left(e_{A} f\right)$
- $x, y, z: \mathcal{C} O, f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z) \vdash$ $\mathcal{C} T_{x, y, z}(f, g, h) \xrightarrow{\sim} \mathcal{D} T_{e_{O} x, e_{O} y, e_{O} z}\left(e_{A} f, e_{A} g, e_{A} h\right)$
- $x, y: \mathcal{C} O, f, g: \mathcal{C} A(x, y) \vdash \mathcal{C} E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C} E_{e_{O} x, e_{O} y}\left(e_{A} f, e_{A} g\right)$

But this is not an equivalence of categories.

Level-wise equivalence

Proposition

For two \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right)
$$

where $\cong_{\mathcal{L}-S \text { tr }}$ denotes levelwise equivalence.
A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{\text {Cat }}-S \operatorname{tr}} \mathcal{D}$ consists of:

- $e_{O}: \mathcal{C O} \xrightarrow{\sim} \mathcal{D O}$
- $x, y: \mathcal{C} O \vdash e_{A}: \mathcal{C} A(x, y) \xrightarrow{\sim} \mathcal{D}\left(e_{O} x, e_{O} y\right)$
- $x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash e_{I}: \mathcal{C} I_{x}(f) \xrightarrow{\sim} \mathcal{D} I_{e_{O} x}\left(e_{A} f\right)$
- $x, y, z: \mathcal{C} O, f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z) \vdash$ $\mathcal{C} T_{x, y, z}(f, g, h) \xrightarrow{\sim} \mathcal{D} T_{e_{O} x, e_{O} y, e_{O} z}\left(e_{A} f, e_{A} g, e_{A} h\right)$
- $x, y: \mathcal{C} O, f, g: \mathcal{C} A(x, y) \vdash \mathcal{C} E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C} E_{e_{O} x, e_{O} y}\left(e_{A} f, e_{A} g\right)$

But this is not an equivalence of categories.
And is it appropriate to call \mathcal{C}, \mathcal{D} categories?

Indiscernibility

Definition

Given an \mathcal{L}-structure M, and an object S of \mathcal{L}, we say that two elements $x, y: M S$ are indiscernible if substituting x for y in any object of \mathcal{L} that depends on (i.e. object with a morphism to) S produces equivalent types.

Definition

An \mathcal{L}-structure M is univalent if for any object S of \mathcal{L}, and any $x, y: M S$, the type of indiscernibilities between x and y is equivalent to the type of equalities between x and y.

Univalent $\mathcal{L}_{\text {cat }}$ structures

Let \mathcal{C} be a univalent $\mathcal{L}_{\text {cat }}$ structure.

Univalent $\mathcal{L}_{\text {cat }}$ structures

Let \mathcal{C} be a univalent $\mathcal{L}_{\text {cat }}$ structure.

- Any two terms
$x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash i, j: \mathcal{C} I_{x}(f)$ are indiscernible.
\rightarrow Each $\mathcal{C} I_{x}(f)$ is a proposition.
\rightarrow Similarly, each $\mathcal{C} T_{x, y, z}(f, g, h), \mathcal{C} E_{x, y}(f, g)$ is a proposition.

Univalent $\mathcal{L}_{\text {cat }}$ structures

Let \mathcal{C} be a univalent $\mathcal{L}_{\text {cat }}$ structure.

- Any two terms $x: \mathcal{C} O, f: \mathcal{C} A(x, x) \vdash i, j: \mathcal{C} I_{x}(f)$ are indiscernible.
\rightarrow Each $\mathcal{C} I_{x}(f)$ is a proposition.
\rightarrow Similarly, each $\mathcal{C} T_{x, y, z}(f, g, h), \mathcal{C} E_{x, y}(f, g)$ is a proposition.
- In the axioms for a category, we have that E behaves like equality (is reflexive and a congruence for T, I, E.)
\rightarrow Univalence at A means that $f=g$ is equivalent to $\mathcal{C} E_{x, y}(f, g)$.
$\rightarrow \mathcal{C} A(x, y)$ is a set.

Univalent $\mathcal{L}_{\text {cat }}$ structures

- The indiscernibilities between $a, b: \mathcal{C} O$ consist of
- $\phi_{x}: \mathcal{C} A(x, a) \cong \mathcal{C} A(x, b)$ for each $x: \mathcal{C} O$
- $\phi_{\bullet}: \mathcal{C} A(a, z) \cong \mathcal{C} A(b, z)$ for each $z: \mathcal{C} O$
- $\phi_{\bullet \bullet}: \mathcal{C} A(a, a) \cong \mathcal{C} A(b, b)$
- The following for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
& \mathcal{C} T_{x, y, a}(f, g, h) \leftrightarrow \mathcal{C} T_{x, y, b}\left(f, \phi_{y}(g), \phi_{x}(h)\right) \\
& \mathcal{C} T_{x, a, z}(f, g, h) \leftrightarrow \mathcal{C} T_{x, b, z}\left(\phi_{\bullet} \bullet(f), \phi_{\bullet z}(g), h\right) \\
& \mathcal{C} T_{a, z, w}(f, g, h) \leftrightarrow \mathcal{C} T_{b, z, w}\left(\phi_{\bullet}(f), g, \phi_{\bullet}(h)\right) \\
& \mathcal{C} T_{x, a, a}(f, g, h) \leftrightarrow \mathcal{C} T_{x, b, b}\left(\phi_{x}(f), \phi_{\bullet \bullet}(g), \phi_{x} \bullet(h)\right) \\
& \mathcal{C} T_{a, x, a}(f, g, h) \leftrightarrow \mathcal{C} T_{b, x, b}\left(\phi_{\bullet x}(f), \phi_{x}(g), \phi_{\bullet \bullet}(h)\right) \\
& \mathcal{C} T_{a, a, x}(f, g, h) \leftrightarrow \mathcal{C} T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet x}(g), \phi_{\bullet x}(h)\right) \\
& \mathcal{C} T_{a, a, a}(f, g, h) \leftrightarrow \mathcal{C} T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

Univalent $\mathcal{L}_{\text {cat }}$ structures

- The indiscernibilities between $a, b: \mathcal{C} O$ consist of
- $\phi_{x \bullet}: \mathcal{C} A(x, a) \cong \mathcal{C} A(x, b)$ for each $x: \mathcal{C} O$
- $\phi_{\bullet}: \mathcal{C} A(a, z) \cong \mathcal{C} A(b, z)$ for each $z: \mathcal{C} O$
- $\phi_{\bullet \bullet}: \mathcal{C} A(a, a) \cong \mathcal{C} A(b, b)$
- The following for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
& \mathcal{C} T_{x, y, a}(f, g, h) \leftrightarrow \mathcal{C} T_{x, y, b}\left(f, \phi_{y}(g), \phi_{x}(h)\right) \\
& \mathcal{C} T_{x, a, z}(f, g, h) \leftrightarrow \mathcal{C} T_{x, b, z}\left(\phi_{\bullet}(f), \phi_{\bullet z}(g), h\right) \\
& \mathcal{C} T_{a, z, w}(f, g, h) \leftrightarrow \mathcal{C} T_{b, z, w}\left(\phi_{\bullet}(f), g, \phi_{\bullet}(h)\right) \\
& \mathcal{C} T_{x, a, a}(f, g, h) \leftrightarrow \mathcal{C} T_{x, b, b}\left(\phi_{x}(f), \phi_{\bullet \bullet}(g), \phi_{x} \bullet(h)\right) \\
& \mathcal{C} T_{a, x, a}(f, g, h) \leftrightarrow \mathcal{C} T_{b, x, b}\left(\phi_{\bullet}(f), \phi_{x}(g), \phi_{\bullet \bullet}(h)\right) \\
& \mathcal{C} T_{a, a, x}(f, g, h) \leftrightarrow \mathcal{C} T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet x}(g), \phi_{\bullet x}(h)\right) \\
& \mathcal{C} T_{a, a, a}(f, g, h) \leftrightarrow \mathcal{C} T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

- But this an isomorphism in the usual categorical sense.
\rightarrow Univalence at O means that $x=y$ is equivalent to $x \cong y$.

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\text {cat }}$-structures

A very surjective morphism or equivalence $F: \mathcal{C} \simeq \mathcal{D}$ of
$\mathcal{L}_{\text {cat }}$-structures consists of surjections

- $F O: \mathcal{C} O \rightarrow \mathcal{D} O$
- $F A: \mathcal{C} A(x, y) \rightarrow \mathcal{D} A(F x, F y)$ for every $x, y: \mathcal{C} O$
- $F T: \mathcal{C} T(f, g, h) \rightarrow \mathcal{D} T(F f, F g, F h)$ for all $f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z)$
- $F E: \mathcal{C} E(f, g) \rightarrow \mathcal{D} E(F f, F g)$ for all $f, g: \mathcal{C} A(x, y)$
- $F I: \mathcal{C} I(f) \rightarrow \mathcal{D} I(F f)$ for all $f: \mathcal{C} A(x, x)$

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\text {cat }}$-structures

A very surjective morphism or equivalence $F: \mathcal{C} \simeq \mathcal{D}$ of univalent $\mathcal{L}_{\text {cat }}$-structures consists of surjections

- $F O: \mathcal{C} O \rightarrow \mathcal{D} O$
- $F A: \mathcal{C} A(x, y) \rightarrow \mathcal{D} A(F x, F y)$ for every $x, y: \mathcal{C} O$
- $F T: \mathcal{C} T(f, g, h) \rightarrow \mathcal{D} T(F f, F g, F h)$ for all $f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z)$
- $F E: \mathcal{C} E(f, g) \rightarrow \mathcal{D} E(F f, F g)$ for all $f, g: \mathcal{C} A(x, y)$
- $F I: \mathcal{C} I(f) \rightarrow \mathcal{D} I(F f)$ for all $f: \mathcal{C} A(x, x)$

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\text {cat }}$-structures

A very surjective morphism or equivalence $F: \mathcal{C} \simeq \mathcal{D}$ of univalent $\mathcal{L}_{\text {cat }}$-structures consists of surjections

- $F O: \mathcal{C} O \rightarrow \mathcal{D} O$
- $F A: \mathcal{C} A(x, y) \rightarrow \mathcal{D} A(F x, F y)$ for every $x, y: \mathcal{C} O$
- $F T: \mathcal{C} T(f, g, h) \leftrightarrow \mathcal{D} T(F f, F g, F h)$ for all $f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z)$
- $F E: \mathcal{C} E(f, g) \leftrightarrow \mathcal{D} E(F f, F g)$ for all $f, g: \mathcal{C} A(x, y)$
- $F I: \mathcal{C} I(f) \leftrightarrow \mathcal{D} I(F f)$ for all $f: \mathcal{C} A(x, x)$

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\text {cat }}$-structures

A very surjective morphism or equivalence $F: \mathcal{C} \simeq \mathcal{D}$ of univalent $\mathcal{L}_{\text {cat }}$-structures consists of surjections

- $F O: \mathcal{C} O \rightarrow \mathcal{D} O$
- $F A: \mathcal{C} A(x, y) \rightarrow \mathcal{D} A(F x, F y)$ for every $x, y: \mathcal{C} O$
- $F T: \mathcal{C} T(f, g, h) \leftrightarrow \mathcal{D} T(F f, F g, F h)$ for all $f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathcal{C} A(x, y)$
- $F I: \mathcal{C} I(f) \leftrightarrow \mathcal{D} I(F f)$ for all $f: \mathcal{C} A(x, x)$

The right notion of equivalence

Main theorem

For two univalent \mathcal{L}-structures S, T,

$$
(S=\mathcal{L}-\operatorname{Str} T) \simeq\left(S \cong_{\mathcal{L}-\operatorname{Str}} T\right) \simeq\left(S \cong_{\mathcal{L}-\mathrm{Str}}^{*} T\right) \simeq(S \rightarrow T)
$$

where $\cong_{\mathcal{L}-S \text { tr }}^{*}$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\text {cat }}$-structures

A very surjective morphism or equivalence $F: \mathcal{C} \simeq \mathcal{D}$ of univalent $\mathcal{L}_{\text {cat }}$-structures consists of surjections

- $F O: \mathcal{C} O \rightarrow \mathcal{D} O$
- $F A: \mathcal{C} A(x, y) \cong \mathcal{D} A(F x, F y)$ for every $x, y: \mathcal{C} O$
- $F T: \mathcal{C} T(f, g, h) \leftrightarrow \mathcal{D} T(F f, F g, F h)$ for all $f: \mathcal{C} A(x, y), g: \mathcal{C} A(y, z), h: \mathcal{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathcal{C} A(x, y)$
- $F I: \mathcal{C} I(f) \leftrightarrow \mathcal{D} I(F f)$ for all $f: \mathcal{C} A(x, x)$

Summary

For every signature \mathcal{L}, we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

Summary

For every signature \mathcal{L}, we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

The paper includes examples of

- †-categories,
- profunctors,
- bicategories,
- opetopic bicategories,
-..

Current and future work

- Drop the splitness condition for certain structures.
- Extend to infinite structures.
- Formulate an analogue to the Rezk completion.
- Translate the theory into one about structures which can include explicit functions.
- Explore mathematics within examples.
- Give a model-category-theoretic account.

Thank you!

[^0]: ${ }^{1}$ jww Ahrens, Shulman, Tsementzis

[^1]: ${ }^{2}$ jww Ahrens, Shulman, Tsementzis

[^2]: ${ }^{3}$ Coquand-Danielsson 2013

[^3]: ${ }^{3}$ Coquand-Danielsson 2013
 ${ }^{4}$ Ahrens-Kapulkin-Shulman 2015

[^4]: ${ }^{5}$ jww Ahrens, Shulman, Tsementzis

