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What is an opinion?

• Logic of tautologies
• Model with lattices.
• Write P ≤ Q to mean that P implies Q.
• P holds when > ≤ P .

• Logic of facts
• Model with up-sets of lattices.
• Given a lattice L of propositions, and a subset E ⊆ of evidence,
↑ E is the set of propositions implied by E.

• Logic of opinions
• Model with fuzzy lattices and fuzzy up-sets.
• Above, we answer “Is P ≤ Q?” or “Does P hold?” with “yes” or

“no”, i.e., “0” or “1”.
• Now we answer “Is P ≤ Q?” or “Does P hold?” with a value in

an ordered monoid, for instance [0, 1].
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The categorical perspective

• (Boole) A lattice is a category enriched in {0, 1} with all finite
meets and joins.

• (GNR) A fuzzy lattice is a category enriched in [0, 1] with all
finite meets and joins.

• We gain many computational tools and constructions from the
existing, extensive development of category theory.
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Weighted meets and joins

Let:
• S = “Alice likes strawberry ice cream.”
• C = “Alice likes chocolate ice cream.”
• B = “Alice likes chocolate ice cream better than strawberry ice

cream.”
• α ∈ [0, 1]

Then we can consider:
• αS = “Alice likes strawberry ice cream with intensity α.”
• B1∧αS = B and αS.

These constructions are defined by universal properties which give
them strong computational behavior. We can prove a ‘fuzzy modus
ponens’:
• (B1∧αS ≤ C) = α and (B1∧αS ≤ αC) = 1
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Back to fuzzy concepts
Let:
• P = “I like the iPhone.”
• Q = “I like the Galaxy.”
• R = “I like the Pixel.”
• S = {P,Q,R}

. Then the set of functions S → [0, 1] has the structure of a fuzzy
lattice.

. (This is the presheaf lattice Ŝ.)

. It is the completion of S under weighted meets and joins.

. The elements are of the form

Pα∧βQ∧γR or ((P, α), (Q, β), (R, γ))

for α, β, γ ∈ [0, 1].
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Fuzzy connected concepts
Let:
• P = “I like the iPhone.”
• Q = “I like the Galaxy.”
• R = “I like the Pixel.”
• S a lattice with underlying set {P,Q,R} and

• (Q ≤ R) = ρ ∈ [0, 1]
• (X ≤ Y ) = 0 for all other pairs X,Y

. Then the set of functions S→ [0, 1] has the structure of a fuzzy
lattice.

. (This is the presheaf lattice Ŝ.)

. It is the completion of S under weighted meets and joins.

. The elements are of the form

Pα∧βQ∧γR or ((P, α), (Q, β), (R, γ))

for α, β, γ ∈ [0, 1] such that β · ρ ≤ γ.
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Fuzzy Laplacian

Friend Relative

Me

Newscaster Politician

αFriend αRelative

αPoliticianαNewscaster

• Each person x
• has their own fuzzy lattice Lx of opinions, and
• communicates that they hold a proposition Px ∈ Lx.

• Then we can consider the α-fuzzy Laplacian at Me:

L(P )Me :=

αx∧
people x

FRMe,xF
L
x,Me(Px)
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Fuzzy global sections

• Instead of global sections
• (a collection Px such that

FL
x,yPx = FL

y,xPy

for all people x, y)
• we consider fuzzy global sections:

• given a function β : {people}2 → [0, 1], a collection Px such that

β(x, y) ≤ (FL
x,yPx ≤ FL

y,xPy)

for all people x, y.

Theorem (GNR)
The fuzzy lattice of β-fuzzy global sections is collection of fixed
points of id ∧ Lβ where Lβ is the β-fuzzy Laplacian.
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Generalization

• In addition to supplying well-behaved algebraic operations
(weighted meets and joins, presheaves), the categorical
perspective has another advantage.
• It easily admits generalization.
• We have thought of categories enriched in [0, 1].
• We could think of categories enriched in any ordered monoid.

• For example, for a fixed set S:

S → [0, 1]

• We expect to be able to generalize to categories enriched in
other categories.
• For example: ∑

S∈Set

S → [0, 1]


