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Introduction: weak factorization systems and type theory

Sharpening the connection between weak factorization systems and type

theory

Directed homotopy type theory



Weak factorization systems

Definition of weak factorization system

Let C be a category. A weak factorization system consists of subclasses
L, R < morphisms(C) such that

1. every morphism f : X — Y of C has a factorization X2 MFELy

into £, R
2. every morphism of L lifts against every morphism of R (written
LINAR)
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|
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3. L is exactly the class of morphisms that lift on the left against all
morphisms in R (written £ = UR)

4. R is exactly the class of morphisms that lift on the right against all
morphisms in £ (written R = £Y).



Weak factorization systems and type theory

» Put two wfs together in the right way, and you get a model
structure. These underlie much of abstract homotopy theory.

» Roughly: in a model structure, one wfs describes cylinder objects
X x | and one wfs describes path objects X'.
What do wfs have to do with type theory?

» We can factor any diagonal X A, X x X into X2 MAPEX x X
» Then let for any points x,y : X, we can let ldx(x,y) := pzl(x,y).
» For any point x € X, we have r(x) := Aa(x) : ldx(x, x).

» For any p : ldx(x,y), we can construct a p~1 : Idx(y, x).

X # MA x,y:X,p: Idx(x,y) - Idx(y,x)
PA (_)71/7 lTOPA x: X r(x): Idx(x,x)

x,y:X,p:Idg(x,y) .14 ,X
MA s X x X y:Xp:Ide(x,y) Fp x(¥, %)



Weak factorization systems and type theory

» If we have p : ldx(x,y) and g : ldx(y, z), can we construct a
p*q:ldx(x,2z)?
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X,y,z: Xap : IdX(X7Y)>q : IdX(Y>Z) = Idx(X,Z)
x,y:X,p: Idx(x,y) - p: Idx(x,y)
%7,z :X,p: Idx(x,y),9: Idx(y,2) - p*q: Idx(x,z)

No: We don't know that 1pa X x Aa isin L.

» We'll see that every model of dependent type theory with ¥ and Id
types induces a weak factorization system with some nice properties



Display map categories
Definition of display map category
Let C be a category with a terminal object *, D < mor(C). (C,D) is a
display map category if
> every morphism to * is in D,
> every isomorphism is in D,
» pullbacks of morphisms in D exist
» and are in D.

We call elements of D display maps.

» The objects of C represent contexts.
> « represents the empty context.

> The morphisms E-2B of D represent dependent types b : B — E(b)
(so every context is also a type in the empty context).

» Pulling back represents substitution (so substituting into the context
of a dependent type produces a new dependent type.)



> and 1 types in display map categories

Definition of ¥ types (Jacobs)
A DMC (C,D) models ¥ types when D is closed under composition.

Definition of I types (Jacobs)
A DMC (C,D) models I types when for all

wExLy

there is a display map lrg representing

home x (f*—,g) : (C/Y)?% — Set.



Id types

Definition of Id types

A DMC (C, D) with X types models (Paulin-Mohring) |d types when for
every display map E-2B of C, there is a factorization of the diagonal

E — Idg(E) —— E xg E

N e

such that € is in D and every pullback f*r of r as shown below has the
left lifting property against D (or: is in ¥D).

X — T fIdg(E) E—— " Idg(E)

N N~

\
>




The weak factorization system

» 3 and Id types produce a factorization of any map f : X — Y
X 0 X xy ld(Y) By

» This generates a weak factorization system (2D, D) where D is
(UD)2 or, equivalently, the retract closure of D. (Gambino-Garner)

» Every model of ¥ and Id lives in a weak factorization system.

» Moreover, this weak factorization system is itself a model.

Theorem (N)

Let C be a Cauchy complete category. Let (C,D) be a DMC modeling ¥
and Id types. Then (C,D) is a DMC modeling ¥ and Id types.
If (C,D) also models I types, then (C,D) models I types.

» So if we're given a wfs (£,R) in C and we want to know if it
harbours a model, we only have to understand (C,R), not every
(C, D) for which D = R.



The characterization

Theorem (N)
Consider a category C with finite limits. The following properties of any
weak factorization system (£, R) on C are equivalent:
1. (C,R) is a display map category modeling ¥ and Id types;
2. every map to the terminal object is in R and L is stable under
pullback along R;
3. it is generated by a Moore relation system.

If this holds and C is locally cartesian closed, then (C,R) also models I1
types.



The symmetry coming into view

Defintion of Moore relation system

A finitely complete category C, an endofunctor R : C — C with natural

transformations
€

X —n— RX

-~
€1

(which can be called a functorial relation), which is
> transitive: px : RX  x  RX — RX for all objects X

RX (% RX — = RX  RX % RX_ x, RX

RX

> homotopical: ¢ : X, (% .R*Y — R(X¢x RY) for all morphisms ...
» symmetric: vx : RX ¢, x¢, RX — RX for all objects X...



The symmetry coming into view

Theorem (N)
Consider a category C with finite limits. The following properties of any
weak factorization system (£, R) on C are equivalent:

1. (C,R) is a display map category modeling ¥ and Id types;

2. every map to the terminal object is in R and L is stable under
pullback along R;

3. it is generated by a Moore relation system.

Corollary (N)

Let (£, R) be a wfs on a finitely complete category C where every map
to the terminal object is in R. Then L is stable under pullback along R
if and only if (£,R) admits a symmetric functorial relation.



The symmetry coming into view
Underlying the characterization theorem is an equivalence which is a
restriction of the following functors:
F-WsT:G
» W is the category of wfs on C
» T is category of data for identity types/functorial relations
» F(L,R) takes an object X to the factorization X2 MALA X % X
of its diagonal
» G(I) produces a wfs from an identity type as we did earlier
For an / in Z which at each X is

X 51d(X) S X x X

FG(I) at each X is

X 2B X xxnx (X x X) 2T X x X

and | = FG(/) if and only if the / is symmetric.
On the other hand, GF(W) is always a wfs, but GF(W) =~ W if and

only if W is symmetric.



The simplest directed weak factorization system

There are two functorial relations on Cat:
c->c® scexe

c-Cc™) scexce

» The first is transitive, homotopical, and symmetric, and so it is a
model of the Id type.

» The second is transitive and homotopical, but not the symmetry.

» It generates a wfs (via the functor G), but not one that models the
Id type.

> In particular, the morphism C(™) — C x C is not in the right class of
the weak factorization system.

» But the twisted arrow category hom(C) — C°P x C is.



Directed type theory

Goal
To develop a directed type theory.

To formalize theorems about:

» Higher category theory
» Directed homotopy theory

» Concurrent processes
> Rewriting

Criteria

» Directed paths are introduced as terms of a type former, hom, to be
added to Martin-Lof type theory

» Transport along terms of hom

> Independence of hom and Id



How does direction come in?

Semantically

higher groupoids

T

higher categories directed spaces
(undirected paths < (directed paths <
directed paths) undirected paths)



Rules for hom: core and op

T TYPE
T<°"® TYPE
T TYPE
T°P TYPE
T TYPE t: Teore
it: T
T TYPE t: Teore

Pt TP



Rules for hom: formation

hom formation

T TYPE s: T°P t: T
homy(s,t) TYPE

Id formation

T TYPE s: T t: T
ldr(s,t) TYPE




Rules for hom: introduction

hom formation

T TYPE t: TCore

1¢ : hom7(i°Pt, it) TYPE

Id introduction

T TYPE t: T

re s ldr(t,t) TYPE



Rules for hom: right elimination and computation

hom right elimination and computation

T TYPE  s: T t:T,f:homy(i%s, t) - D(f) TYPE
s: T d(s): D(1)
s: T t: T,f:homy(i°®s,t) - er(d,f): D(f)
s: T - eg(d,1s) = d(s) : D(1s)

Id elimination and computation

T TYPE
s: T,t:T,f:ldr(s,t) — D(f) TYPE s: Trd(s):D(rs)

s:T,t:T,f:ldy(s,t) +j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)



Rules for hom: left elimination and computation

hom left elimination and computation

T TYPE s: T t: T f :homy(s,it) - D(f) TYPE
s: T d(s): D(1s)
s: TP t: T f:homy(s,it) - e(d,f): D(f)
s: T e (d,15) = d(s) : D(1s)

Id elimination and computation

T TYPE
s: T,t:T,f:ldr(s,t) — D(f) TYPE s: Trd(s):D(rs)

s:T,t:T,f:ldy(s,t) +j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)



Syntactic results

» Transport: for a dependent type t: T  S(t):

t: Teore, t T,f: homT(iOPt, t,)75 : 5(’t)
I transportg(s, f) : S(t')

» Composition: for a type T:

r:TOP s: T t:T,f:homy(r,is),g:homy(i°s,t)
- compgr(f,g) : homy(r,t)



The

interpretation

Use the framework of comprehension categories
Dependent types are represented by functors T : [ — Cat.

Dependent terms are represented by natural transformations

*
/—ﬂ
-yt Cat
~—=7
=
where x : [ — Cat is the functor which takes everything to the
one-object category.

Context extension is represented by the Grothendieck construction
which takes each functor T : [ — Cat to the Grothendieck

opfibration
I f T—>T.
r



Interpreting core and op in the empty context

T TYPE T TYPE t: T
T TYPE T°P TYPE it: T j°Pt ;. T°P

For any category T,

> Teore = ob(T)
> TOP = ToP

> [ TO€ — T and j° : T — T°P are the identity on objects.



Interpreting hom formation and introduction

T TYPE s: T°P t: T T TYPE t: Teore

homy(s,t) TYPE 1t : hom7(i°Pt,it) TYPE

For any category T,

» Take the functor

hom: T°°? x T — Set — Cat.

» Take the natural transformation

*

Teore ™ |1 Cat

hom o(i°Px 1)

where each component 1; : = — hom(t, t) picks out the identity

morphism of t.



Interpreting right hom elimination and computation

T TYPE  s: T t:T,f:homr(i°®s,t) — D(f) TYPE
s: T d(s): D(1s)
s: T ¢t:T,f:homy(i%s, t) Fer(d,f): D(f)
s: T - er(d, 1s) = d(s) : D(1s)

» Use the fact that the subcategory

* T<°re is coreflective:
m > for every (s, t,f) € { ., 7 hom there
1 D C is a unique morphism
. « at (1s,f) : (s,5,15) — (s, t, f) with

\d domain in T<°r¢
Tcore D > Set eR(d)(sJ’,c) = D(ls, f)d(s,s,ls)

§core , 7 hOM



Interpreting left hom elimination and computation

T TYPE s: TP t: T f:homy(s,it) — D(f) TYPE
s: T d(s): D(1)
s: TP t: T f:homy(s,it) - e(d,f): D(f)
s: T e (d,1s) = d(s) : D(1s)

» Replace T by T°P and apply right hom elimination and computation.



The homotopy theory

» The right class of the wfs generated by * 7 E
C~ are those functors E-2B which lDOM/// lp
have the enriched right lifting property (=) B

» so all Grothendieck opfibrations (dependent projections) are in the
right class.

» The functor T<orels, §rcore 7 hom is the left part of the
factorization of

i TO® > T.

» Then the right hom elimination and computation rule arises from

the weak factorization system.

Tcore d s D
STcore <T hom

er(d T
\{1. R(/)/// lﬂ

§reore 7 hom == {7 7 hom



Summary & future work

Summary

We have:
> a directed type theory

» with a model in Cat.

Future work

We need to:
» integrate this into traditional Martin-Lof type theory
> integrate Id and hom in the same theory
> specify ¥, 1, etc
» find interpretations in categories of directed spaces

> build ‘directed’ weak factorization systems
> build universes



Thank you!
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