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Outline

Introduction: weak factorization systems and type theory

Sharpening the connection between weak factorization systems and type
theory

Directed homotopy type theory
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Weak factorization systems

Definition of weak factorization system

Let C be a category. A weak factorization system consists of subclasses
L,R Ď morphismspCq such that

1. every morphism f : X Ñ Y of C has a factorization X
λf
ÝÑMf

ρf
ÝÑY

into L,R
2. every morphism of L lifts against every morphism of R (written

L m R)
‚ ‚

‚ ‚

3. L is exactly the class of morphisms that lift on the left against all
morphisms in R (written L “ mR)

4. R is exactly the class of morphisms that lift on the right against all
morphisms in L (written R “ Lm).
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Weak factorization systems and type theory

§ Put two wfs together in the right way, and you get a model
structure. These underlie much of abstract homotopy theory.

§ Roughly: in a model structure, one wfs describes cylinder objects
X ˆ I and one wfs describes path objects X I .

What do wfs have to do with type theory?

§ We can factor any diagonal X
∆
ÝÑ X ˆ X into X

λ∆
ÝÝÑM∆

ρ∆
ÝÑX ˆ X .

§ Then let for any points x , y : X , we can let IdX px , yq :“ ρ´1
∆ px , yq.

§ For any point x P X , we have rpxq :“ λ∆pxq : IdX px , xq.

§ For any p : IdX px , yq, we can construct a p´1 : IdX py , xq.

X M∆

M∆ X ˆ X

λ∆

λ∆

τ˝ρ∆

ρ∆

p´q´1

x, y : X, p : IdXpx, yq $ IdXpy, xq
x : X $ rpxq : IdXpx, xq

x, y : X, p : Idxpx, yq $ p´1 : IdXpy, xq
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Weak factorization systems and type theory

§ If we have p : IdX px , yq and q : IdX py , zq, can we construct a
p ˚ q : IdX px , zq?

M∆ M∆

M∆ˆX M∆ X ˆ X

1M∆ˆλ∆ ρ∆

ρ∆,1ˆρ∆,2

x, y, z : X, p : IdXpx, yq, q : IdXpy, zq $ IdXpx, zq
x, y : X, p : IdXpx, yq $ p : IdXpx, yq

x, y, z : X, p : Idxpx, yq, q : IdXpy, zq $ p ˚ q : IdXpx, zq

No: We don’t know that 1M∆ ˆX λ∆ is in L.

§ We’ll see that every model of dependent type theory with Σ and Id
types induces a weak factorization system with some nice properties
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Display map categories

Definition of display map category

Let C be a category with a terminal object ˚, D Ď morpCq. pC,Dq is a
display map category if

§ every morphism to ˚ is in D,

§ every isomorphism is in D,

§ pullbacks of morphisms in D exist

§ and are in D.

We call elements of D display maps.

§ The objects of C represent contexts.

§ ˚ represents the empty context.

§ The morphisms E
p
ÝÑB of D represent dependent types b : B $ E pbq

(so every context is also a type in the empty context).

§ Pulling back represents substitution (so substituting into the context
of a dependent type produces a new dependent type.)
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Σ and Π types in display map categories

Definition of Σ types (Jacobs)

A DMC pC,Dq models Σ types when D is closed under composition.

Definition of Π types (Jacobs)

A DMC pC,Dq models Π types when for all

W
g
ÝÑX

f
ÝÑY

there is a display map Πf g representing

homC{X pf
˚´, gq : pC{Y qop Ñ Set.
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Id types

Definition of Id types

A DMC pC,Dq with Σ types models (Paulin-Mohring) Id types when for

every display map E
p
ÝÑB of C, there is a factorization of the diagonal

E IdBpE q E ˆB E

B

r

p Idppq

ε

pˆp

such that ε is in D and every pullback f ˚r of r as shown below has the
left lifting property against D (or: is in mD).

X f ˚IdBpE q E IdBpE q

X E

f ˚r r

πi ε
f
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The weak factorization system

§ Σ and Id types produce a factorization of any map f : X Ñ Y

X X ˆY IdpY q Yf ˚r π1επ1

§ This generates a weak factorization system pmD,Dq where D is
pmDqm or, equivalently, the retract closure of D. (Gambino-Garner)

§ Every model of Σ and Id lives in a weak factorization system.

§ Moreover, this weak factorization system is itself a model.

Theorem (N)

Let C be a Cauchy complete category. Let pC,Dq be a DMC modeling Σ
and Id types. Then pC,Dq is a DMC modeling Σ and Id types.
If pC,Dq also models Π types, then pC,Dq models Π types.

§ So if we’re given a wfs pL,Rq in C and we want to know if it
harbours a model, we only have to understand pC,Rq, not every
pC,Dq for which D “ R.
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The characterization

Theorem (N)

Consider a category C with finite limits. The following properties of any
weak factorization system pL,Rq on C are equivalent:

1. pC,Rq is a display map category modeling Σ and Id types;

2. every map to the terminal object is in R and L is stable under
pullback along R;

3. it is generated by a Moore relation system.

If this holds and C is locally cartesian closed, then pC,Rq also models Π
types.
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The symmetry coming into view

Defintion of Moore relation system

A finitely complete category C, an endofunctor R : C Ñ C with natural
transformations

X η // RX
ε1

oo

ε0oo

(which can be called a functorial relation), which is

§ transitive: µX : RX ˆε1 ε0
RX Ñ RX for all objects X

RX ˆε1 ε0
RX

ε1π1

��
ε0π0

��

µ // RX

ε1

��
ε0

��
X X

RX
1ˆη // RX ˆε1 ε0

RX

µ

��
RX

§ homotopical: τf : X ˆηf ζR
˝Y Ñ RpX ˆf ε0

RY q for all morphisms f ...

§ symmetric: νX : RX ε0ˆε0RX Ñ RX for all objects X ...
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The symmetry coming into view

Theorem (N)

Consider a category C with finite limits. The following properties of any
weak factorization system pL,Rq on C are equivalent:

1. pC,Rq is a display map category modeling Σ and Id types;

2. every map to the terminal object is in R and L is stable under
pullback along R;

3. it is generated by a Moore relation system.

Corollary (N)

Let pL,Rq be a wfs on a finitely complete category C where every map
to the terminal object is in R. Then L is stable under pullback along R
if and only if pL,Rq admits a symmetric functorial relation.
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The symmetry coming into view
Underlying the characterization theorem is an equivalence which is a
restriction of the following functors:

F : W Ô I : G

§ W is the category of wfs on C
§ I is category of data for identity types/functorial relations

§ F pL,Rq takes an object X to the factorization X
λ∆
ÝÝÑM∆

ρ∆
ÝÑX ˆ X

of its diagonal

§ G pI q produces a wfs from an identity type as we did earlier

For an I in I which at each X is

X
r
ÝÑ IdpX q

ε
ÝÑ X ˆ X

FG pI q at each X is

X
1ˆr∆
ÝÝÝÑ X ˆXˆX IdpX ˆ X q

π1επ1
ÝÝÝÑ X ˆ X

and I – FG pI q if and only if the I is symmetric.
On the other hand, GF pW q is always a wfs, but GF pW q –W if and
only if W is symmetric.
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The simplest directed weak factorization system

There are two functorial relations on Cat:

C Ñ Cp–q Ñ C ˆ C

C Ñ CpÑÑÑq Ñ C ˆ C

§ The first is transitive, homotopical, and symmetric, and so it is a
model of the Id type.

§ The second is transitive and homotopical, but not the symmetry.

§ It generates a wfs (via the functor G ), but not one that models the
Id type.

§ In particular, the morphism CpÑÑÑq Ñ C ˆ C is not in the right class of
the weak factorization system.

§ But the twisted arrow category hompCq Ñ Cop ˆ C is.
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Directed type theory

Goal

To develop a directed type theory.

To formalize theorems about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes
§ Rewriting

Criteria

§ Directed paths are introduced as terms of a type former, hom, to be
added to Martin-Löf type theory

§ Transport along terms of hom

§ Independence of hom and Id
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How does direction come in?

Semantically

higher groupoids

higher categories
(undirected paths Ď

directed paths)

directed spaces
(directed paths Ď

undirected paths)
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Rules for hom: core and op

T TYPE

T core
TYPE

T TYPE

T op
TYPE

T TYPE t : T core

it : T

T TYPE t : T core

iopt : T op
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Rules for hom: formation

hom formation

T TYPE s : T op t : T

homT ps, tq TYPE

Id formation

T TYPE s : T t : T

IdT ps, tq TYPE
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Rules for hom: introduction

hom formation

T TYPE t : T core

1t : homT pi
opt, itq TYPE

Id introduction

T TYPE t : T

rt : IdT pt, tq TYPE
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Rules for hom: right elimination and computation

hom right elimination and computation

T TYPE s : T core, t : T , f : homT pi
ops, tq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T core, t : T , f : homT pi
ops, tq $ eRpd , f q : Dpf q

s : T core $ eRpd , 1sq ” dpsq : Dp1sq

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq
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Rules for hom: left elimination and computation

hom left elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq
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Syntactic results

§ Transport: for a dependent type t : T $ Sptq:

t : T core, t 1 : T , f : homT pi
opt, t 1q, s : Spitq
$ transportRps, f q : Spt 1q

§ Composition: for a type T :

r : T op, s : T core, t : T , f : homT pr , isq, g : homT pi
ops, tq

$ compRpf , gq : homT pr , tq
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The interpretation

§ Use the framework of comprehension categories

§ Dependent types are represented by functors T : Γ Ñ Cat.

§ Dependent terms are represented by natural transformations

Γ

˚ ))

T

77�� t Cat

where ˚ : Γ Ñ Cat is the functor which takes everything to the
one-object category.

§ Context extension is represented by the Grothendieck construction
which takes each functor T : Γ Ñ Cat to the Grothendieck
opfibration

πΓ :

ż

Γ
T Ñ Γ.
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Interpreting core and op in the empty context

T TYPE

T core
TYPE T op

TYPE

T TYPE t : T core

it : T iopt : T op

For any category T ,

§ T core :“ obpT q

§ T op :“ T op

§ i : T core Ñ T and iop : T core Ñ T op are the identity on objects.
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Interpreting hom formation and introduction

T TYPE s : T op t : T

homT ps, tq TYPE

T TYPE t : T core

1t : homT pi
opt, itq TYPE

For any category T ,

§ Take the functor

hom : T op ˆ T Ñ Set ãÑ Cat.

§ Take the natural transformation

T core

˚
**

hom ˝piopˆiq

44�� 1‚ Cat

where each component 1t : ˚ Ñ hompt, tq picks out the identity
morphism of t.
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Interpreting right hom elimination and computation

T TYPE s : T core, t : T , f : homT pi
ops, tq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T core, t : T , f : homT pi
ops, tq $ eRpd , f q : Dpf q

s : T core $ eRpd , 1sq ” dpsq : Dp1sq

ş

T coreˆT hom
˚

!!
D ..

� eRpdq

Cat

T core

˚
11

D

;;

��d
?�

1‚

OO

§ Use the fact that the subcategory
T core is coreflective:

§ for every ps, t, f q P
ş

T coreˆT
hom there

is a unique morphism
p1s , f q : ps, s, 1sq Ñ ps, t, f q with
domain in T core

§ Set eRpdqps,t,f q :“ Dp1s , f qdps,s,1sq
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Interpreting left hom elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq

§ Replace T by T op and apply right hom elimination and computation.



31/34

The homotopy theory

§ The right class of the wfs generated by
CÑ are those functors E

p
ÝÑB which

have the enriched right lifting property

˚ E

pÑÑÑq B

DOM p

§ so all Grothendieck opfibrations (dependent projections) are in the
right class.

§ The functor T core 1‚
ãÝÑ

ş

T coreˆT hom is the left part of the
factorization of

i : T core Ñ T .

§ Then the right hom elimination and computation rule arises from
the weak factorization system.

T core
ş

ş

TcoreˆT hom D

ş

T coreˆT hom
ş

T coreˆT hom

1‚

d

π
eRpdq
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Summary & future work

Summary

We have:

§ a directed type theory

§ with a model in Cat.

Future work

We need to:
§ integrate this into traditional Martin-Löf type theory

§ integrate Id and hom in the same theory
§ specify Σ, Π, etc

§ find interpretations in categories of directed spaces
§ build ‘directed’ weak factorization systems
§ build universes
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Thank you!
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