Coinductive control of inductive data types

Paige Randall North and Maximilien Péroux

Published in CALCO 2023 arXiv:2303.16793

14 December 2023

Outline

Overview

Overview

Categorical W-types

Forerunners

Endofunctors

Overview

Theorem (N.-Péroux)

The category of algebras over an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor.

Overview

Theorem (N.-Péroux)

The category of algebras over an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (N.-Péroux)

The category of algebras over an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

Get more control over algebras

Get more "initial algebras" (e.g. generalized W-types)

Natural numbers

Syntax

Inductive N : Type :=

0 : N

 $| s : \mathbb{N} \to \mathbb{N}.$

Natural numbers

Syntax

Inductive N : Type :=

10: N

 $l s : N \rightarrow N.$

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + X$ on Set.
- 2. An algebra is a set X together with $\langle 0_X, s_X \rangle : 1 + X \to X$.

Forerunners

3. The initial algebra is \mathbb{N} .

Natural numbers

Syntax

Overview

Inductive N : Type :=

10: N

 $| s : \mathbb{N} \to \mathbb{N}.$

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + X$ on Set.
- 2. An algebra is a set X together with $\langle 0_X, s_X \rangle : 1 + X \to X$.
- 3. The initial algebra is \mathbb{N} .

Coinductive data types and coalgebras

- 1. A coalgebra is a set X together with $X \to 1 + X$.
- 2. The terminal coalgebra is \mathbb{N}^{∞} .

Forerunners

Overview

Syntax

```
Inductive list (A) : Type :=
```

| nil : list (A)

 \mid cons : $A \rightarrow list(A) \rightarrow list(A)$.

Lists

Overview

Syntax

```
Inductive list (A) : Type :=
| nil : list (A)
```

 $| cons : A \rightarrow list(A) \rightarrow list(A).$

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + A \times X$ on Set.
- 2. An algebra is a set X with $\langle \mathsf{nil}_X, \mathsf{cons}_X \rangle : 1 + A \times X \to X$.
- 3. The initial algebra is $\mathbb{L}ist(A)$.

Lists

Syntax

```
Inductive list (A) : Type :=
| nil : list (A)
```

 \mid cons : $A \rightarrow list(A) \rightarrow list(A)$.

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + A \times X$ on Set.
- 2. An algebra is a set X with $\langle \mathsf{nil}_X, \mathsf{cons}_X \rangle : 1 + A \times X \to X$.

Forerunners

3. The initial algebra is $\mathbb{L}ist(A)$.

Coinductive data types and coalgebras

- 1. A coalgebra is a set X together with $X \to 1 + A \times X$.
- 2. The terminal coalgebra is Stream(A).

Previous work on coalgebraic enrichment

Univeral measuring coalgebra (Wraith, Sweedler 1968)

For k-algebras A and B, there is a k-coalgebra Alg(A, B)

▶ which underlies an enrichment of *k*-algebras in *k*-coalgebras

Forerunners

• whose set-like elements are in bijection with Alg(A, B).

Taking B := k, one gets the dual Alg(A, k) of A.

Extensions

- Anel-Joyal 2013 (dg-algebras)
- Hyland-Franco-Vasilakopoulou 2017 (monoids)
- ▶ Vasilakopoulou 2019 (V-categories)
- ▶ Péroux 2022 (∞-algebras of an ∞-operad)
- McDermott-Rivas-Uustalu 2022 (monads)

¹those $c \in Alg(A, B)$ s.t. $\Delta c = c \otimes c$ and $\epsilon(c) = 1_A$

Enriched categories

Definition

Overview

An enrichment of a category C in a monoidal category V consists of

- ▶ a functor $\mathcal{C}(-,-):\mathcal{C}^{\mathsf{op}}\times\mathcal{C}\to\mathcal{V}$
- ▶ a morphism $\mathbb{I} \to \mathcal{C}(A, A)$ for each $A \in \mathsf{ob}\ \mathcal{C}$
- ▶ a morphism $C(A, B) \otimes C(B, C) \rightarrow C(A, C)$ for $A, B, C \in \text{ob } C$
- ▶ an isomorphism $\mathcal{V}(\mathbb{I}, \mathcal{C}(A, B)) \cong \mathcal{C}(A, B)$ for $A, B \in \mathsf{ob}\ \mathcal{C}$.

such that ...

Remark

Monoidal *closed* means enriched in itself.

Measuring in general

Fix a locally presentable, symmetric monoidal closed category $\mathcal C$ and an accessible, lax symmetric monoidalendofunctor F.

Measuring

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \to (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \to \underline{C}(A, B)$ satisfying:

ying:
$$FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \xrightarrow{\alpha} \underline{C}(FA, FB)$$

$$\downarrow^{\beta}$$

$$\underline{C}(A, B) \xrightarrow{\alpha} \underline{C}(FA, B)$$

The *universal measure* Alg(A, B) is the terminal one.

Measuring in general

Fix a locally presentable, symmetric monoidal closed category \mathcal{C} and an accessible, lax symmetric monoidalendofunctor F.

Measuring

Overview

For algebras (A, α) , (B, β) a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{C}(A, B)$ satisfying:

ring:
$$FC \xrightarrow{F(\phi)} F(\underline{C}(A,B)) \xrightarrow{\alpha} \underline{C}(FA,FB)$$

$$\downarrow^{\beta}$$

$$\underline{C}(A,B) \xrightarrow{\alpha} \underline{C}(FA,B)$$

The *universal measure* Alg(A, B) is the terminal one.

Theorem (N.-Péroux)

The universal measure $\underline{\mathsf{Alg}}(A,B)$ always exists, and these are the hom-coalgebras of an enrichment of $\mathsf{Alg}(F)$ in $\mathsf{CoAlg}(F)$.

Measuring for the natural numbers

Measuring

Overview

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all [c] = 0 and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $[\![c]\!] \geqslant 1$ and for all $a \in A$.

The *universal measure* Alg(A, B) is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $[\![c]\!] \geqslant 1$ and for all $a \in A$.

The *universal measure* Alg(A, B) is the terminal measure $A \rightarrow B$.

What is this?

Set-like elements in general

Definition

Overview

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

Set-like elements in general

Definition

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

► The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.

Set-like elements in general

Definition

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

- ▶ The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.
- ▶ If we're considering (Set, \times , *), the underlying set of \mathbb{I} is *, so these are 'special' elements of the underlying set of Alg(A, B).

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=*

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \mathsf{Alg}(A,B)$ is an element $*\in \mathsf{Alg}(A,B)$ s.t. *-1=*

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism

Measuring

- - -

•
$$f_c(0_A) = 0_B$$
 for all $c \in C$;

...

•
$$f_c(a+1) = f_{c-1}(a) + 1$$
 for $[\![c]\!] \geqslant 1$ and for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism

Measuring

- - -

Overview

•
$$f_*(0_A) = 0_B$$
;

...

•
$$f_*(a+1) = f_*(a) + 1$$
 for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism that is, an element of $\mathtt{Alg}(A,B)$.

Measuring

 $f_*(0_A) = 0_B;$

...

• $f_*(a+1) = f_*(a) + 1$ for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism that is, an element of $\mathsf{Alg}(A,B)$.

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong *$$
 $\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$

Example

Overview

$$\underline{\mathsf{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

Example

Overview

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- ► f₀
- ▶ f₁
- $ightharpoonup f_{\infty}$

- $f_0(0) = 0_B$
- $f_0(a+1) = 0_B$ for all $a \in A$

Example

Overview

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- ▶ f₁
- $ightharpoonup f_{\infty}$

- $f_0(0) = 0_B$
- $f_0(a+1) = 0_B$ for all $a \in A$

Example

Overview

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- ▶ f₁
- $ightharpoonup f_{\infty}$

- $f_1(0_A) = 0_B$
- $f_1(a+1) = f_0(a) + 1$ for all $a \in A$

Example

Overview

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- $f_1(0) = 0_A; f_1(sn) = 1_A$
- $ightharpoonup f_{\infty}$

- $f_1(0_A) = 0_B$
- $f_1(a+1) = f_0(a) + 1$ for all $a \in A$

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- $f_1(0) = 0_A$; $f_1(sn) = 1_A$

• f_{∞}

Measuring

..

- $f_{\infty}(0) = 0_B$
- $f_{\infty}(a+1) = f_{\infty}(a) + 1$

Example

Overview

$$\mathsf{Alg}(\mathbb{N}, \mathit{A}) \cong \mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A$$
; $f_1(sn) = 1_A$

 $f_{\infty}(n) = n_A$

Measuring

. . .

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A$$
; $f_1(sn) = 1_A$

. . .

•
$$f_{\infty}(n) = n_A$$

Definition

So we call elements of the underlying of $\underline{Alg}(A, B)$ *n-partial algebra homomorphisms*.

- ▶ Let \mathbb{N} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

Overview

$$\mathsf{Alg}(\mathbb{n},A)\cong egin{cases} * & \mathsf{if}\ n_A=m_A\ \mathsf{for\ all}\ m\geqslant n; \ \varnothing & \mathsf{otherwise}. \end{cases}$$

- ▶ Let m denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- ▶ Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

Overview

$$\mathsf{Alg}(\mathbb{n},A)\cong egin{cases} * & \mathsf{if}\ n_A=m_A\ \mathsf{for}\ \mathsf{all}\ m\geqslant n; \ \varnothing & \mathsf{otherwise}. \end{cases}$$

$$\underline{\mathsf{Alg}}(\mathsf{m},A) \cong \begin{cases} \mathbb{N}^{\infty} & \text{if } n_A = m_A \text{ for all } m \geqslant n; \\ \mathbb{n}^{\circ} & \text{otherwise.} \end{cases}$$

▶ So there is at least always an *n*-partial homomorphism out of *n* (which is unique).

What can we do with this?

Generalize W-types, i.e., initial algebras.

C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A such that for all other algebras B there is a unique

$$C \to \underline{\mathsf{Alg}}(A, B).$$

Initial object

An initial object in a category $\mathcal C$ is an object A such that for all other algebras B there is a unique

$$* \to \mathcal{C}(A, B)$$
.

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the I-initial algebra
- $ightharpoonup \mathbb{N}$ is the \mathbb{N}^{∞} -initial algebra

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the I-initial algebra
- $ightharpoonup \mathbb{N}$ is the \mathbb{N}^{∞} -initial algebra
- ▶ \mathbb{I} (or \mathbb{N}^{∞} -) initial means initial with respect to total algebra homomorphisms

Theorem

n is the n°-initial algebra

 n°-initial means initial with respect to partial algebra homomorphisms

Examples

(Endofunctors on a locally presentable symmetric monoidal category)

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- $(F \otimes G)$ The tensor of two instances (\mathcal{C} closed)
- (F+G) The coproduct of an instance F and an 'F-module' G
 - (id^A) The exponential id^A at object A (C cartesian closed)
- (W-type) The polynomial endofunctor associated to a morphism $f: X \to Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1}: C \to \operatorname{Set} (C = \operatorname{Set})$
 - (d.e.s.) A discrete equational system (monoidal structure on $\mathcal C$ is cocartesian, C has binary products that preserve filtered colimits)

Summary

We have

- that algebras are enriched in coalgebras (under certain hypotheses)
- an interpretation as notion of partial algebra homomorphism (especially in the case N)
- many examples
- a more refined notion of initial algebra

Future work

- Work out more of the examples in detail
- ▶ Understand *C*-initial algebras in more examples and in general
- Understand if this extra structure is useful for programming languages
- Understand if there is a connection with domain theory

Thank you!