Directed Type Theory for State Space Analysis

Paige Randall North

University of Pennsylvania

21 July 2021

Overview

- (Dependent) type theory is a foundation for mathematics in which all proofs ↔¹ programs can be checked ↔¹ compiled by a computer.
- Homotopy type theory is a foundation for the study of homotopy types (topological spaces).
- Directed homotopy type theory² is a foundation for the study of directed homotopy types (directed topological spaces).
- Directed spaces³ capture much of the theory of vector fields on manifolds⁴

¹Curry-Howard correspondence

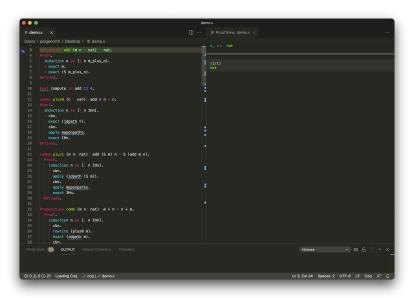
²under construction

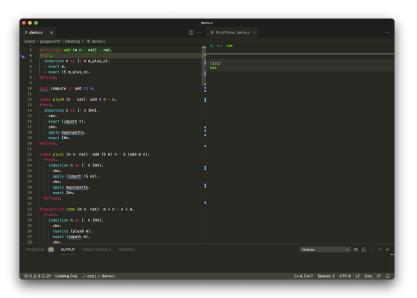
³See Sanjeevi Krishnan's talk for more details about directed spaces.

⁴See Jared Culbertson's and Samuel Burden's talks too see how such objects are used to provide operational semantics for robotics.

- The basic objects are types, that we can interpret as sets, propositions, a program specification, etc.
- Built out of type formers. We can construct:
 - types like \mathbb{N} and
 - ▶ types like $A \times B$, A + B, $A \rightarrow B$, etc, from two types A and B.
- The type formers are (usually) given by inductive principles.
 - E.g.: N is inductively generated from the canonical terms 0 : N and Sn : N for every n : N.

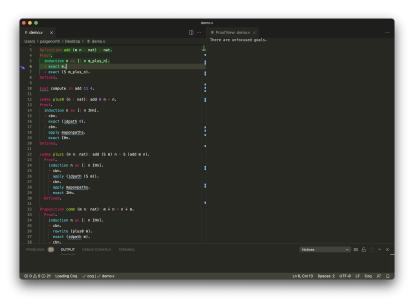
E demo.v X	□ ···	
	Not in proof mode.	
Jsers > paigenorth > Desktop > = demo.v		
3 Definition add (m n : nat) : nat. 4 Proof.		
<pre>5 induction n as [] n m_plus_n].</pre>		
6 + exact m.		
7 + exact (S m_plus_n).		
10 Eval compute in add 11 4.		
11 12 Lemma plus0 (n : nat): add 0 n = n.		
12 Lemma pluse (n : nat): add e n = n. 13 Proof.		
14 induction n as [] n IHn].		
15 - cbn.		
16 exact (idpath 0).		
18 apply maponpaths.		
19 exact IHn. 20 Defined.		
22 Lemma plus1 (m n: nat): add (S m) n = S (add m n).		
24 induction n as [] n IHn].		
26 apply (idpath (S m)).		
27 – cbn.		
28 apply maponpaths. 29 exact IHn.		
30 Defined.		
32 Proposition comm (m n: nat): m + n = n + m.		
34 induction n as [n IHn].		
36 rewrite (plus0 m). 37 exact (idpath m).		
38 - cbn.		
PROBLEMS 20 OUTPUT DEBUG CONSOLE TERMINAL	Notices V III A 1	
PROBLEMS 20 001PUT DEBUG CONSOLE TERMINAL	Notices Y = 0	
)0 ≙ 0 ⊙ 21 Loading Coq √ coq √ demo.v	Ln 1, Col 40 Spaces: 2 UTF-8 LF Cog ;	

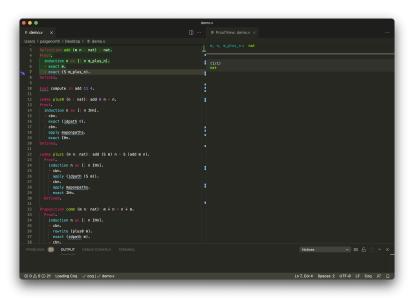




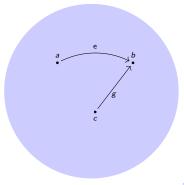
demo.v ×		
ers > paigenorth > Desktop > ≅ demo.v		
3 Definition add (m n : nat) : nat.		
5 induction n as [] n m_plus_n]. 6 + exact m.		(1/2) nat
7 + exact (S m_plus_n).		
9 10 <u>Eval</u> compute in add 11 4.		
12 Lemma plus0 (n : nat): add 0 n = n. 13 Proof.		
3 Proof. 4 induction n as [] n IHn].		
15 - cbn.		
6 exact (idpath θ).		
17 - cbn. 18 apply maponpaths.	:	
9 exact IHn.		
1 12 Lemma plus1 (m.n. nat): add (S.m) n = S (add m.n).		
12 Lomma plus1 (n n: nat): add (S n) n = S (add m n). Proof.		
induction n as [n IHn].		
5 - cbn.		
26 apply (idpath (S m)). 27 - cbn.		
apply maponpaths.		
9 exact IHn.		
Proposition comm (m n: nat): m + n = n + m.		
<pre>induction n as [] n IHn] cbn.</pre>		
is - con. if rewrite (plus0 m).		
17 exact (idpath m).		
8 – cbn.		
ROBLEMS 20 OUTPUT DEBUG CONSOLE TERMINAL		Notices V III 🛆 🔿 🔿
0 ≜ 0 ⊙ 21 Loading Coq , ✓ coq ✓ demo.v		Ln 5, Col 33 Spaces: 2 UTF-8 LF Coq 🔗 🗘

	demo.v
E demo.v →	
5 induction n as [n m_plus_n]. 6 dexact m.	1 (1/1) nat
7 + exact (S n_plus_n). 8 Defined. 9	
10 Eval compute in add 11 4.	
 Lemma plus@ (n : nat): add @ n = n. Proof. 	
14 induction n as [n IHn]. 15 - cbn.	
16 exact (idpath 0). 17 - cbn.	
18 apply manonpaths. 19 exact IHn.	
28 Defined. 21 22 Lemma plus1 (n n: nat): add (S n) n = S (add m n).	
22 Lemma prussi (m n: nat): add (S m) n = S (add m n). 23 Proof. 24 induction n as [n IHn].	
25 - cbn. 26 apply (idpath (S m)).	
27 - cbn. 28 apply <u>mappingshis</u> . 29 exact IMn.	
32 Proposition comm (m n: nat): m ∔ n = n ∔ m. 33 Proof. 34 induction n as [n IHm].	
35 - cbn. 36 rewrite (plus@ m). 37 exact (idpath m).	
PROBLEMS (21) OUTPUT DEBUG CONSOLE TERMINAL	Notices ✓ = A 10 A X
⊗ 0 ≜ 0 ⊙ 21 Loading Coq √ coq √ demo.v	Ln 6, Col 4 Spaces: 2 UTF-8 LF Coq 戻 🗘

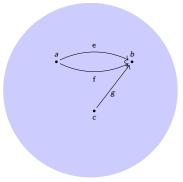




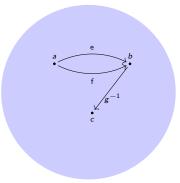
- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.



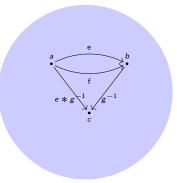
- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.
- We can have equalities e, f : a = b.



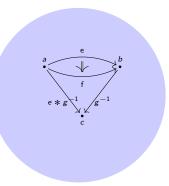
- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.
- We can have equalities e, f : a = b.
- Equalities are invertible.



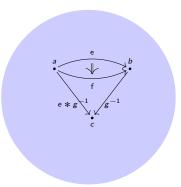
- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.
- We can have equalities e, f : a = b.
- Equalities are invertible.
- Equalities are composable.



- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.
- We can have equalities e, f : a = b.
- Equalities are invertible.
- Equalities are composable.
- There can be "higher" equalities.



- Equality is also given inductively.
- The equality type a = b (for two terms a, b : A) is generated inductively by the canonical term r_a : a = a for each term a : A.
 - Just as \mathbb{N} is generated by the canonical elements $0 : \mathbb{N}$ and $Sn : \mathbb{N}$ for each $n : \mathbb{N}$.
- We can have equalities e, f : a = b.
- Equalities are invertible.
- Equalities are composable.
- There can be "higher" equalities.
- This makes types behave like homotopy types or spaces.



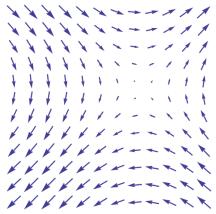
Interpretation of type theory in homotopy type theory

- Homotopy type theory has a rigorous interpretation in the category of simplicial sets (among others), the category in which classical homotopy theory takes place.⁵
- We can check and develop the mathematics of homotopy types / spaces (in particular, simplicial sets) in homotopy type theory.
 - Homotopy groups of spheres⁶
 - Higher groups⁷
 - etc
- The **Univalence Axiom** allows us to treat equivalent things as equal.
 - Different implementations of programs (with different advantages) can be equated.⁸

⁵Lumsdaine, Kapulkin, Voevodsky 2012
 ⁶Licata, Shulman, Brunerie
 ⁷Buchholz, van Doorn, Rijke, 2018
 ⁸Angiuli, Cavallo, Mörtberg, Zeuner 2020

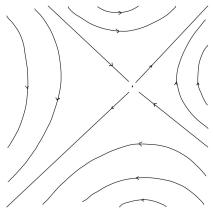
Directed spaces

Given a manifold *M* with vector field *F*, the manifold *M* together with the finite-time trajectories⁹ produces a directed space.



Directed spaces

Given a manifold *M* with vector field *F*, the manifold *M* together with the finite-time trajectories⁹ produces a directed space.



We introduce a homomorphism type former hom on top of a modal type theory with modal transformations op, core.

¹⁰Under construction, see North 2019

- We introduce a homomorphism type former hom on top of a modal type theory with modal transformations op, core.
- For each type A and each a : A, b : A, we have hom(a, b).

¹⁰Under construction, see North 2019

- We introduce a homomorphism type former hom on top of a modal type theory with modal transformations op, core.
- For each type A and each $a:^{op} A, b: A$, we have hom(a, b).
- There is one canonical element 1_a : hom(a, a),

¹⁰Under construction, see North 2019

- We introduce a **homomorphism** type former hom on top of a modal type theory with modal transformations op, core.
- For each type A and each $a:^{op} A, b: A$, we have hom(a, b).
- ▶ There is one canonical element 1_a : hom(a, a),
- But it has two induction principles: a forward and a backward one.

¹⁰Under construction, see North 2019

- We introduce a homomorphism type former hom on top of a modal type theory with modal transformations op, core.
- For each type A and each $a:^{op} A, b: A$, we have hom(a, b).
- ▶ There is one canonical element 1_a : hom(a, a),
- But it has two induction principles: a forward and a backward one.
- In a category, directed space, etc, given a homomorphism f : x → y, there are two 'homomorphisms' from one of the form 1_a to it.

¹⁰Under construction, see North 2019

- We introduce a **homomorphism** type former hom on top of a modal type theory with modal transformations op, core.
- For each type A and each $a:^{op} A, b: A$, we have hom(a, b).
- ▶ There is one canonical element 1_a : hom(a, a),
- But it has two induction principles: a forward and a backward one.
- In a category, directed space, etc, given a homomorphism f : x → y, there are two 'homomorphisms' from one of the form 1_a to it.

This has an interpretations¹⁰ in the category of categories, categories of directed spaces, etc...

 $^{^{10}\}text{Under}$ construction, see North 2019

Future work

- We hope to develop this type theory.
- Check theorems from directed homotopy theory, dynamics, etc.
- Develop higher inductive types. These correspond to directed homotopy colimits in some cases and perhaps a notion of hybrifold.

Thank you!