Directed Type Theory for State Space Analysis

Paige Randall North

University of Pennsylvania

21 July 2021

Overview

v

(Dependent) type theory is a foundation for mathematics in
which all proofs <! programs can be checked <! compiled
by a computer.

» Homotopy type theory is a foundation for the study of
homotopy types (topological spaces).

» Directed homotopy type theory? is a foundation for the study
of directed homotopy types (directed topological spaces).

» Directed spaces® capture much of the theory of vector fields
on manifolds*

1Curry-Howard correspondence

2under construction

3See Sanjeevi Krishnan's talk for more details about directed spaces.

*See Jared Culbertson's and Samuel Burden's talks too see how such
objects are used to provide operational semantics for robotics.

Type theory

» The basic objects are types, that we can interpret as sets,
propositions, a program specification, etc.
> Built out of type formers. We can construct:
> types like N and
> types like Ax B, A+ B, A— B, etc, from two types A and B.
» The type formers are (usually) given by inductive principles.

» E.g.: Nis inductively generated from the canonical terms 0 : N
and Sn: N for every n: N.

Type theory

o0

= demov X =

Users > paigenorth > Desktop > £ demow Not in proof mode.

add (mn : nat) - nat.
induction n 2 [n m_plus_nl.

exact (S m_plus_n).

compute 1 add
pluso (n : nat): add 0 n - n.
induction n as [| n IHnl.
cbn.
exact (idpath 0).
cbn.
apply maponpaths.
exact THn.
plusl (m n: nat): add (Sm) n - S (add mn).
induction n as [| n THnl.
cbn.
apply (idpath (5 m)).
cbn.
apply maponpaths.
exact THn.
omn (m n: nat): m 4 n
induction n s [n IHnl.
cbn.
rewrite (pluso m).
exact (idpath m).

cbn.

@ outpur Notices.

®0A0®21 LoadingCoq / coa| / demoy. Ln1,Col40 Spaces:2 UTF-8 LF Cog & 0O

Type theory

o0

= demov X

Users > paigenorth > Desktop > = demow

3 add (mn - nat) - mat.
induction n a5 [| n m_plus_n].

exact m.
exact (S m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plust (m n: nat): add (S m) n - S (add m n).

induction n as [| n THnl.
con
apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m4n - ndm

induction n as [| n THnl.

cbn.

rewrite (pluso m).

exact (idpath m).

cbn.
@ outpur Notices

®0A0®21 LoadingCoq / coa| / demoy. Ln3,Col38 Spaces:2 UTF-8 LF Coa & O

Type theory

o0
= demov X
Users > paigenorth > Desktop > = demow
add (mn : nat) - mat.
induction n 2 [| n m_plus_n].

exact m.
exact (S m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plust (m n: nat): add (S m) n - S (add m n).

induction n as [| n THnl.
con
apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m4n - ndm

induction n a5 [| n THnl.

cbn.

rewrite (pluso m).

exact (idpath m).

cbn.
@ outpur Notices.

®0A0®21 LoadingCoq / coa| / demoy. Lna,Col7 Spaces:2 UTF-8 LF Coa & O

Type theory

o0
= demov X
Users > paigenorth > Desktop > = demow
add (mn : nat) - mat.
induction n o= [/ n m_plus_nl.

exact m.
exact (S m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plust (m n: nat): add (S m) n - S (add m n).

induction n as [| n THnl.
con
apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m 4 n

induction n as [| n THnl.

cbn.

rewrite (pluso m).

exact (idpath m).

cbn.
@ outpur Notices

®0A0®21 LoadingCoq / coa| / demoy. L5 Col33 Spaces:2 UTF-8 LF Coa & O

Type theory

o0
= demov X
Users > paigenorth > Desktop > = demow

add (mn : nat) - mat.

induction n [/ nm_plus_nl.
| exact .
exact (5 m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plust (m n: nat): add (S m) n - S (add m n).

induction n as [| n THnl.
con
apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m 4 n

induction n a5 [| n THnl.
cbn.
rewrite (pluso m).
exact (idpath m).
cbn

@ outpur Notices.

®0A0®21 LoadingCoq / coa| / demoy. L6 Colda Spaces:2 UTF-8 LF Coa & 0

Type theory

o0
= demov X
Desktop > £ demow

Users > paigenort

add (mn : nat) - mat.
induction n 55 [| n m_plus_n].

exact (S m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plusi (m n: nat): add (S m) n

induction n as [| n THnl.
con
apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m 4 n

induction n a5 [| n THnl.
cbn.
rewrite (pluso m).
exact (idpath m).
cbn.

@ outpur

®0A0®21 LoadingCoq / coa| / demoy.

S (add m).

There are unfocused goals.

Notices.

Ln6, Col 13

Spaces: 2

uTF-8

LF

Coa A

0

Type theory

o0
= demov X
Users > paigenorth > Desktop > = demow
add (mn : nat) - mat.
induction n 55 [| n m_plus_n].

exact m.
exact (S m_plus_n).

compute i add
pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plust (m n: nat): add (S m) n - S (add m n).

induction n as [| n THnl.
con

apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m4n - ndm

induction n a5 [| n THnl.

cbn.

rewrite (pluso m).

exact (idpath m).

cbn.
@ outpur Notices.

®0A0®21 LoadingCoq / coa| / demoy. Ln7,Col4 Spaces:2 UTF-8 LF Cog & 0O

Type theory

L)
= demov x k
Users > paigenorth > Desktop > £ demov No more subgoals.
add (a0 nat) © nat.
induction n [/ nm_plus_nl.
exact .
exact (5 m_plus_n) |

compute 1 add
plso (n : nat): add 0 n - n.
tion n a5 [| n Ihnl.
exact (idpath 0).
con.
apply maponpaths.
exact Thn.
plusL (m n: nat): add (S m) n - S (add m n).
induction n as [| n THnl.
con
apply (idpath (s m).
con.
apply maponpaths.
exact Thn.
com (mn: nat): m+n - ndm.
nduction n a5 [/ n IHnl.
con.
rewrite (pluso m).

exact (idpath m).
cbn.

@ outpur Notices.

®0A0®21 LoadingCoq / coa| / demoy. Ln7,Col24 Spaces:2 UTF-8 LF Coa & O

Type theory

o0
= demov X
Users > paigenorth > Desktop > = demow
add (mn : nat) - mat.
induction n 55 [| n m_plus_n].
exact m.
exact (S m_plus_n).
compute i add

pluso (n : nat): add 0 n - n.

induction n a5 [| n THn.
cbn.

exact (idpath 0).

cbn

apply maponpaths.
exact THn.

plusi (m n: nat): add (S m) n

induction n as [| n THnl.
con

apply (idpath (s m).
con

apply maponpaths.
exact THn.

com (mn: nat): m 4 n

induction n a5 [| n THnl.
cbn.

rewrite (pluso m).
exact (idpath m).

cbn.

@ outpur

®0A0®21 LoadingCoq / coa| / demoy.

S (add m).

Not in proof mode.

Notices.

Ln8,Col9 Spaces: 2

uTF-8

LF

Coa A

0

Type theory

o0

= demov X

paigenorth > Desktop > £ demo
add (mn : nat) - mat.
induction n 55 [| n m_plus_n].

exact m.
exact (S m_plus_n).

L compute - add 11 4]
PLiso (n + nat): add 0 0 - n.
induction n [/ n IHn].

cbn.
exact (idpath 0).
cbn

apply maponpaths.
exact Thn.

plusl (m n: nat): add (S m) n
induction n as [| n THnl.

con

apply (idpath (s m).

con.

apply maponpaths.

exact Thn.

com (m n: nat): m 4 n

induction n as [| n THnl.

con.

rewrite (pluso m).

exact (idpath m).

ouTPUT

®0A0®21 LoadingCoq / coa| / demoy.

S (add m).

Not in proof mode.

Notices.

Ln10,Col 26 Spaces: 2

uTF-8

LF

Coa A

0

Homotopy type theory

» Equality is also given inductively.

» The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A

> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

Homotopy type theory

» Equality is also given inductively.

» The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A

> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

» We can have equalities e,f : a = b.

Homotopy type theory

» Equality is also given inductively.

» The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A

> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

We can have equalities e, f : a = b.

v

v

Equalities are invertible.

Homotopy type theory

» Equality is also given inductively.

» The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A

> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

We can have equalities e, f : a = b.

v

v

Equalities are invertible.

v

Equalities are composable.

Homotopy type theory

>

>

Equality is also given inductively.

The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A
> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

We can have equalities e, f : a = b.
Equalities are invertible.
Equalities are composable.

There can be “higher” equalities.

Homotopy type theory

>

>

Equality is also given inductively.

The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term r, : a = a for each term
a:A
> Just as N is generated by the canonical elements 0 : N and
Sn : N for each n: N.

We can have equalities e, f : a = b.
Equalities are invertible.

Equalities are composable.

There can be “higher” equalities.

This makes types behave like
homotopy types or spaces.

Interpretation of type theory in homotopy type theory

» Homotopy type theory has a rigorous interpretation in the
category of simplicial sets (among others), the category in
which classical homotopy theory takes place.®

» We can check and develop the mathematics of homotopy
types / spaces (in particular, simplicial sets) in homotopy type
theory.

> Homotopy groups of spheres®
> Higher groups’
> etc

» The Univalence Axiom allows us to treat equivalent things

as equal.
> Different implementations of programs (with different
advantages) can be equated.®

Lumsdaine, Kapulkin, Voevodsky 2012
6Licata, Shulman, Brunerie

"Buchholz, van Doorn, Rijke, 2018

8 Angiuli, Cavallo, Mértberg, Zeuner 2020

Directed spaces

» Given a manifold M with vector field F, the manifold M
together with the finite-time trajectories® produces a directed

space.
NN 7 7 7
NNNNNNS =g
NNNNNN N~ A
\\\\\\\~f//f
Vbbb rof
A
A AV A A AR N N
I N NN N
K ¥V VK re =~ X
PSPt N
VYT S QN
VP PO T S SN

%closed under reparametrization

Directed spaces

» Given a manifold M with vector field F, the manifold M
together with the finite-time trajectories® produces a directed

/ A
TN

%closed under reparametrization

Directed homotopy type theory!®

» We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

OUnder construction, see North 2019

Directed homotopy type theory!®

» We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

» For each type A and each a: A,b: A, we have hom(a, b).

OUnder construction, see North 2019

Directed homotopy type theory!®

» We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

» For each type A and each a:°® A, b: A, we have hom(a, b).

» There is one canonical element 1, : hom(a, a),

OUnder construction, see North 2019

Directed homotopy type theory!®

» We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

» For each type A and each a:°® A, b: A, we have hom(a, b).
» There is one canonical element 1, : hom(a, a),

» But it has two induction principles: a forward and a backward
one.

OUnder construction, see North 2019

Directed homotopy type theory!®

>

We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

For each type A and each a:°°? A, b : A, we have hom(a, b).
There is one canonical element 1, : hom(a, a),

But it has two induction principles: a forward and a backward
one.

In a category, directed space, etc, given a homomorphism
f 1 x — y, there are two ‘homomorphisms’ from one of the

form 1, to it.
1x

X

y

1 1

< <— X
-
<

< T"‘

<K <— X
-

5

X

<

OUnder construction, see North 2019

Directed homotopy type theory!®

» We introduce a homomorphism type former hom on top of a
modal type theory with modal transformations op, core.

» For each type A and each a:°® A, b: A, we have hom(a, b).
» There is one canonical element 1, : hom(a, a),

» But it has two induction principles: a forward and a backward
one.

» In a category, directed space, etc, given a homomorphism
f 1 x — y, there are two ‘homomorphisms’ from one of the

form 1, to it.
1x

X

y

1 1

&
< T"‘

<<— X
-

5

<<4— X
-

X

y

» This has an interpretations!® in the category of categories,
categories of directed spaces, etc...

OUnder construction, see North 2019

Future work

» We hope to develop this type theory.

» Check theorems from directed homotopy theory, dynamics,
etc.

» Develop higher inductive types. These correspond to directed

homotopy colimits in some cases and perhaps a notion of
hybrifold.

Thank you!

