Work in progress: generalization 00000

Coinductive control of inductive data types

Paige Randall North jww Maximilien Péroux & Lukas Mulder

based on:

Coinductive control of inductive data types, North & Péroux Measuring data types, Mulder, North & Péroux and work in progress

1 November 2024

Endofunctors 000000000 Work in progress: generalization $_{\rm OOOOO}$

Outline

Overview and background

Endofunctors

Work in progress: generalization

Endofunctors 000000000 Work in progress: generalization $_{\rm OOOOO}$

Outline

Overview and background

Endofunctors

Work in progress: generalization

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category C, we get a functor

 $\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category C, we get a functor

 $\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category C, we get a functor

 $\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

More "initial algebras" (e.g. generalized W-types)

Previous work on coalgebraic enrichment Univeral measuring coalgebra (Sweedler, Wraith 1968)

For k-algebras A and B, there is a k-coalgebra Alg(A, B)

- which underlies an enrichment of k-algebras in k-coalgebras
- whose *set-like elements* are in bijection with Alg(A, B).

Analogues

- Anel-Joyal 2013 (dg-algebras)
- Hyland-Lopez Franco-Vasilakopoulou 2017 (monoids)
- Vasilakopoulou 2019 (V-categories)
- ▶ Péroux 2022 (∞-algebras of an ∞-operad)
- McDermott-Rivas-Uustalu 2022 (monads)
- North-Péroux 2023 (algebras of endofunctors)

^{▶ ...}

Motivation: inductive types

- ▶ In functional programming, most types are defined *inductively*.
- Categorically: initial alg of polynomial endofunctor (W-type)

Example: N

- ▶ \mathbb{N} is the initial algebra of the endofunctor $X \mapsto X + 1$ (on Set)
- The terminal coalgebra is \mathbb{N}^{∞}
- This functor satisfies the hypotheses of our theorem.

Example: lists in a set A

- The set of lists in A is the initial algebra of $X \mapsto 1 + A \times X$.
- The terminal coalgebra is the set of *streams* in A.
- With a commutative monoid structure on A, this functor satisfies the hypotheses of our theorem.

Endofunctors •00000000 Work in progress: generalization $_{\rm OOOOO}$

Outline

Overview and background

Endofunctors

Work in progress: generalization

Measuring in general

Fix a locally presentable, symmetric monoidal closed category C and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \to (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \to \underline{C}(A, B)$ satisfying: $FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \longrightarrow \underline{C}(FA, FB)$ \downarrow^{β} $\underline{C}(A, B) \xrightarrow{\alpha} \underline{C}(FA, B)$

The universal measure Alg(A, B) is the terminal one.

Measuring in general

Fix a locally presentable, symmetric monoidal closed category C and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{C}(A, B)$ satisfying: $FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \longrightarrow \underline{C}(FA, FB)$ \downarrow^{β} $\underline{C}(A, B) \xrightarrow{\alpha} \underline{C}(FA, B)$

The universal measure Alg(A, B) is the terminal one.

Theorem (N.-Péroux)

The universal measure $\underline{Alg}(A, B)$ always exists, and these are the hom-coalgebras of an enrichment of Alg_F in $CoAlg_F$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

The universal measure Alg(A, B) is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

The universal measure Alg(A, B) is the terminal measure $A \rightarrow B$.

What is this?

Work in progress: generalization $_{\rm OOOOO}$

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

Work in progress: generalization $_{\rm OOOOO}$

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

Work in progress: generalization $_{\rm OOOOO}$

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$\mathsf{I} \to \mathsf{Alg}(A,B)$$

where $\mathbb I$ has underlying set $\{*\}$ such that *-1=*

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \mathsf{Alg}(A,B)$ is an element $* \in \mathsf{Alg}(A,B)$ s.t. *-1=*

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that * - 1 = *so $\mathbb{I} \to \underline{Alg}(A, B)$ is an element $* \in \underline{Alg}(A, B)$ s.t. * - 1 = *so f_* is a total algebra homomorphism

Definition: measuring

•
$$f_c(0_A) = 0_B$$
 for all $c \in C$;

•
$$f_c(a+1) = f_{c-1}(a) + 1$$
 for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that * - 1 = *so $\mathbb{I} \to \underline{Alg}(A, B)$ is an element $* \in \underline{Alg}(A, B)$ s.t. * - 1 = *so f_* is a total algebra homomorphism

Definition: measuring

•
$$f_*(0_A) = 0_B;$$

•
$$f_*(a+1) = f_*(a) + 1$$
 for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that * - 1 = *so $\mathbb{I} \to \underline{Alg}(A, B)$ is an element $* \in \underline{Alg}(A, B)$ s.t. * - 1 = *so f_* is a total algebra homomorphism that is, an element of $\underline{Alg}(A, B)$.

Definition: measuring

•
$$f_*(0_A) = 0_B;$$

•
$$f_*(a+1) = f_*(a) + 1$$
 for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that * - 1 = *so $\mathbb{I} \to \underline{Alg}(A, B)$ is an element $* \in \underline{Alg}(A, B)$ s.t. * - 1 = *so f_* is a total algebra homomorphism that is, an element of Alg(A, B).

Example

 $\begin{array}{l} \mathsf{Alg}(\mathbb{N},A)\cong\ast\\ \mathsf{Alg}(\mathbb{N},A)\cong\mathbb{N}^\infty\end{array}$

Work in progress: generalization $_{\rm OOOOO}$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty$$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

Definition: measuring

•
$$f_0(0) = 0_B$$

•
$$f_0(a+1) = 0_B$$
 for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

Definition: measuring

•
$$f_0(0) = 0_B$$

•
$$f_0(a+1) = 0_B$$
 for all $a \in A$

Endofunctors 000000000 Work in progress: generalization $_{\rm OOOOO}$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

Definition: measuring

•
$$f_1(0_A) = 0_B$$

•
$$f_1(a+1) = f_0(a) + 1$$
 for all $a \in A$

Endofunctors 000000000 Work in progress: generalization $_{\rm OOOOO}$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

• $f_1(0) = 0_A \cdot f_1(sn)$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

Definition: measuring

•
$$f_1(0_A) = 0_B$$

•
$$f_1(a+1) = f_0(a) + 1$$
 for all $a \in A$

Endofunctors 000000000 Work in progress: generalization $_{\rm OOOOO}$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

• $f_1(0) = 0_A \cdot f_1(sn)$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

Definition: measuring

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

 1_A

•
$$f_0(n) = 0_A$$

• $f_1(0) = 0_A; f_1(sn) =$

•
$$f_{\infty}(n) = n_A$$

. . .

Definition: measuring

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

•
$$f_{\infty}(n) = n_A$$

Definition

. . .

So we call elements of the underlying of $\underline{Alg}(A, B)$ *n-partial algebra homomorphisms*.

Endofunctors 0000000000

What are the non-set-like elements?

- Let \mathbb{n} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\operatorname{Alg}(\mathbb{n}, A) \cong egin{cases} * & ext{if } n_A = m_A ext{ for all } m \geqslant n; \ arnothing & ext{otherwise.} \end{cases}$$

Endofunctors 0000000000

What are the non-set-like elements?

- Let \square denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n}, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \ge n; \\ \varnothing & \text{otherwise.} \end{cases}$$

$$\underline{\operatorname{Alg}}(\mathbb{n},A) \cong egin{cases} \mathbb{N}^\infty & ext{if } n_A = m_A ext{ for all } m \geqslant n; \\ \mathbb{n}^\circ & ext{otherwise.} \end{cases}$$

So there is at least always an *n*-partial homomorphism out of *n* (which is unique). What can we do with this? Generalize W-types, i.e., initial algebras.

Definition: C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A such that for all other algebras B there is a unique

$$C \to \underline{\operatorname{Alg}}(A, B).$$

Examples

For the natural-numbers endofunctor:

- \mathbb{N} is the \mathbb{N}^{∞} -*initial algebra* (i.e., initial wrt total algebra homs)
- ▶ n is the n°-initial algebra (i.e., initial wrt partial algebra homs)

Examples

On a locally presentable symmetric monoidal category $\ensuremath{\mathcal{C}}$:

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- $(F \otimes G)$ The tensor of two instances (C closed)
- (F + G)~ The coproduct of an instance F and an 'F-module'~G
- (id^A) The exponential id^A at object A (C cartesian closed)
- (*W*-type) The polynomial endofunctor associated to a morphism $f: X \to Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1}: C \to \text{Set} (\mathcal{C} := \text{Set})$
 - (d.e.s.) A discrete equational system of Leinster (monoidal structure on C is cocartesian, C has binary products that preserve filtered colimits)

Endofunctors 000000000 Work in progress: generalization $_{\odot OOOO}$

Outline

Overview and background

Endofunctors

Work in progress: generalization

Endofunctors 000000000

Proof sketch of main theorem¹

Convolution algebra

We get a functor

$$\begin{split} [-,-]: \mathsf{CoAlg}^\mathsf{op} \times \mathsf{Alg} &\to \mathsf{Alg} \\ (\mathcal{C},\chi), \ (\mathcal{A},\alpha) \mapsto (\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}),?) \end{split}$$

where ? is the composite

$$F\underline{\mathcal{C}}(C,A) \to \underline{\mathcal{C}}(FC,FA) \xrightarrow{\alpha^*\chi_*} \underline{\mathcal{C}}(C,A).$$

Then we use the adjoint functor theorem to get an enriched hom $\underline{\mathrm{Alg}}(-,-):\mathrm{Alg}^{\mathrm{op}}\times\mathrm{Alg}\to\mathrm{CoAlg}.$

 $^{{}^{1}}C$ a locally presentable, symmetric monoidal closed category; F an accessible, lax symmetric monoidal endofunctor

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

▶ For $F, G : C \to D$: (F, G)-dialgebras² are enriched in (G, F)-dialgebras.

From

$$F\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}) \to \underline{\mathcal{C}}(F\mathcal{C},F\mathcal{A}) \xrightarrow{\alpha^*\chi_*} \underline{\mathcal{C}}(\mathcal{GC},\mathcal{GA}) \to \mathcal{G}\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}).$$

²objects are pairs $(X \in C, \delta : FX \rightarrow GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : C \to D$: (F, G)-dialgebras² are enriched in (G, F)-dialgebras.
- ▶ For $F : C \to E$, $G : D \to E$: $F \downarrow G$ is enriched in $G \downarrow F$.

From

$$F\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}) \to \underline{\mathcal{C}}(F\mathcal{C},F\mathcal{A}) \xrightarrow{\alpha^*\chi_*} \underline{\mathcal{C}}(\mathcal{G}\mathcal{C}',\mathcal{G}\mathcal{A}') \to \mathcal{G}\underline{\mathcal{C}}(\mathcal{C}',\mathcal{A}').$$

²objects are pairs $(X \in C, \delta : FX \to GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : C \to D$: (F, G)-dialgebras² are enriched in (G, F)-dialgebras.
- For $F : \mathcal{C} \to \mathcal{E}$, $G : \mathcal{D} \to \mathcal{E}$: $F \downarrow G$ is enriched in $G \downarrow F$.

From

▶ ...

$$F\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}) \to \underline{\mathcal{C}}(F\mathcal{C},F\mathcal{A}) \xrightarrow{\alpha^*\chi_*} \underline{\mathcal{C}}(\mathcal{G}\mathcal{C}',\mathcal{G}\mathcal{A}') \to \mathcal{G}\underline{\mathcal{C}}(\mathcal{C}',\mathcal{A}').$$

²objects are pairs $(X \in C, \delta : FX \to GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Summary

We have

- that algebras are enriched in coalgebras (under certain hypotheses)
- an interpretation as notion of partial algebra homomorphism (especially in the case ℕ)
- many examples
- a more refined notion of initial algebra
- a generalization ...

Endofunctors 000000000 Work in progress: generalization ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc}$

Thank you!