[Overview and background](#page-2-0) [Endofunctors](#page-8-0) [Work in progress: generalization](#page-34-0) 00000

Coinductive control of inductive data types

Paige Randall North jww Maximilien Péroux & Lukas Mulder

based on:

Coinductive control of inductive data types, North & Péroux Measuring data types, Mulder, North & Péroux and work in progress

1 November 2024

Outline

[Overview and background](#page-2-0)

[Endofunctors](#page-8-0)

[Work in progress: generalization](#page-34-0)

Outline

[Overview and background](#page-2-0)

[Endofunctors](#page-8-0)

[Work in progress: generalization](#page-34-0)

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

 $End_{\mathcal{O}_2\text{lsm}}(\mathcal{C}) \to EntCat.$

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

 $End_{\mathcal{O}_2\text{lsm}}(\mathcal{C}) \to EntCat.$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

 $End_{\mathcal{O}_2\text{lsm}}(\mathcal{C}) \to EntCat.$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

More "initial algebras" (e.g. generalized W-types)

Previous work on coalgebraic enrichment

Univeral measuring coalgebra (Sweedler, Wraith 1968)

For k-algebras A and B, there is a k-coalgebra $\text{Alg}(A, B)$

- \triangleright which underlies an enrichment of *k*-algebras in *k*-coalgebras
- whose set-like elements are in bijection with $\text{Alg}(A, B)$.

Analogues

§ ...

- ▶ Anel-Joyal 2013 (dg-algebras)
- § Hyland-Lopez Franco-Vasilakopoulou 2017 (monoids)
- ▶ Vasilakopoulou 2019 (V -categories)
- Péroux 2022 (∞ -algebras of an ∞ -operad)
- ▶ McDermott-Rivas-Uustalu 2022 (monads)
- \triangleright North-Péroux 2023 (algebras of endofunctors)

Motivation: inductive types

- ▶ In functional programming, most types are defined *inductively*.
- § Categorically: initial alg of polynomial endofunctor (W-type)

Example: **N**

- $\blacktriangleright \mathbb{N}$ is the initial algebra of the endofunctor $X \mapsto X + 1$ (on Set)
- \blacktriangleright The terminal coalgebra is \mathbb{N}^{∞}
- ▶ This functor satisfies the hypotheses of our theorem.

Example: lists in a set A

- ▶ The set of lists in A is the initial algebra of $X \mapsto 1 + A \times X$.
- \triangleright The terminal coalgebra is the set of *streams* in A.
- \triangleright With a commutative monoid structure on A, this functor satisfies the hypotheses of our theorem.

Outline

[Overview and background](#page-2-0)

[Endofunctors](#page-8-0)

[Work in progress: generalization](#page-34-0)

Measuring in general

Fix a locally presentable, symmetric monoidal closed category C and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \to \mathcal{C}(A, B)$ satisfying: $FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \longrightarrow \underline{C}(FA, FB)$ $\mathcal{C}_{0}^{(n)}$ $\stackrel{\rightarrow}{\sim} C(A, B)$ $\longrightarrow \stackrel{\alpha}{\sim} \stackrel{\sim}{\sim} (FA, B)$ β χ $\phi \rightarrow \rho (AB)$ α

The *universal measure* $\text{Alg}(A, B)$ is the terminal one.

Measuring in general

Fix a locally presentable, symmetric monoidal closed category $\mathcal C$ and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \to \underline{\mathcal{C}}(A, B)$ satisfying: $FC \longrightarrow F(\underline{\mathcal{C}}(A, B)) \longrightarrow \underline{\mathcal{C}}(FA, FB)$ $\mathcal{C}_{0}^{(n)}$ $\underline{\mathcal{C}}(A, B) \longrightarrow \underline{\mathcal{C}}(FA, B)$ $F(\phi)$ β χ $\phi \rightarrow \rho (AB)$ α

The *universal measure* $\text{Alg}(A, B)$ is the terminal one.

Theorem (N.-Péroux)

The universal measure $\text{Alg}(A, B)$ always exists, and these are the hom-coalgebras of an enrichment of Alg $_F$ in CoAlg $_F$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- \blacktriangleright $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a + 1) = f_{c-1}(a) + 1$ for $||c|| \ge 1$ and for all $a \in A$.

The *universal measure* Alg (A, B) is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- \blacktriangleright $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a + 1) = f_{c-1}(a) + 1$ for $||c|| \ge 1$ and for all $a \in A$.

The *universal measure* Alg (A, B) is the terminal measure $A \rightarrow B$.

What is this?

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$
\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)
$$

i.e., elements of $\text{Alg}(A, B)$.

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$
\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)
$$

i.e., elements of $\text{Alg}(A, B)$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where **I** has underlying set $\{*\}$ such that $* - 1 = *$ so $\mathbb{I} \to \mathsf{Alg}(A, B)$ is an element $* \in \mathsf{Alg}(A, B)$ s.t. $* - 1 = *$

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where **I** has underlying set $\{*\}$ such that $* - 1 = *$ so $\mathbb{I} \to \mathsf{Alg}(A, B)$ is an element $* \in \mathsf{Alg}(A, B)$ s.t. $* - 1 = *$ so f_* is a total algebra homomorphism

Definition: measuring

...

$$
\blacktriangleright f_c(0_A) = 0_B \text{ for all } c \in C;
$$

$$
\blacktriangleright f_c(a+1) = f_{c-1}(a) + 1 \text{ for } [c] \geq 1 \text{ and for all } a \in A.
$$

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where **I** has underlying set $\{*\}$ such that $* - 1 = *$ so $\mathbb{I} \to \mathsf{Alg}(A, B)$ is an element $* \in \mathsf{Alg}(A, B)$ s.t. $* - 1 = *$ so f_* is a total algebra homomorphism

Definition: measuring

$$
\quad \blacktriangleright \ f_*(0_A) = 0_B;
$$

...

•
$$
f_*(a+1) = f_*(a) + 1
$$
 for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where **I** has underlying set $\{*\}$ such that $* - 1 = *$ so $\mathbb{I} \to \mathsf{Alg}(A, B)$ is an element $* \in \mathsf{Alg}(A, B)$ s.t. $* - 1 = *$ so f_* is a total algebra homomorphism that is, an element of $\text{Alg}(A, B)$.

Definition: measuring

$$
\quad \blacktriangleright \ f_*(0_A) = 0_B;
$$

...

•
$$
f_*(a+1) = f_*(a) + 1
$$
 for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$
\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)
$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$ so $\mathbb{I} \to \mathsf{Alg}(A, B)$ is an element $* \in \mathsf{Alg}(A, B)$ s.t. $* - 1 = *$ so f_* is a total algebra homomorphism that is, an element of $\text{Alg}(A, B)$.

Example

$$
Alg(N, A) \cong * \underline{Alg(N, A)} \cong \mathbb{N}^{\infty}
$$

What are the non-set-like elements?

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

$$
\begin{array}{c}\n\cdot & f_0 \\
\cdot & f_1 \\
\cdot & \cdot\n\end{array}
$$

 \blacktriangleright f_{∞}

Definition: measuring

$$
\blacktriangleright \ f_0(0) = 0_B
$$

$$
\blacktriangleright f_0(a+1) = 0_B \text{ for all } a \in A
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

$$
\begin{array}{ll} \star & f_0(n) = 0_A \\ \star & f_1 \\ \cdots \end{array}
$$

$$
\mathord{\hspace{1pt}\text{--}\hspace{1pt}} f_\infty
$$

Definition: measuring

$$
\blacktriangleright \ f_0(0) = 0_B
$$

$$
\blacktriangleright f_0(a+1) = 0_B \text{ for all } a \in A
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

$$
\begin{array}{ll} \star & f_0(n) = 0_A \\ \star & f_1 \end{array}
$$

$$
\bullet \ f_{\infty}
$$

Definition: measuring

$$
\quad \blacktriangleright \ f_1(0_A) = 0_B
$$

$$
\blacktriangleright f_1(a+1) = f_0(a) + 1 \text{ for all } a \in A
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

▶
$$
f_0(n) = 0_A
$$

\n▶ $f_1(0) = 0_A$; $f_1(sn) = 1_A$

$$
\bullet \ \ f_{\infty}
$$

Definition: measuring

$$
\ldots
$$

$$
\quad \blacktriangleright \ f_1(0_A) = 0_B
$$

$$
\blacktriangleright f_1(a+1) = f_0(a) + 1 \text{ for all } a \in A
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

▶
$$
f_0(n) = 0_A
$$

\n▶ $f_1(0) = 0_A$; $f_1(sn) = 1_A$

$$
\bullet \ \ f_{\infty}
$$

Definition: measuring

$$
\ldots
$$

$$
\blacktriangleright f_{\infty}(0) = 0_B
$$

$$
\blacktriangleright \ f_{\infty}(a+1) = f_{\infty}(a) + 1
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\text{Alg}(\mathbb{N}, A)$ by

▶
$$
f_0(n) = 0_A
$$

\n▶ $f_1(0) = 0_A$; $f_1(sn) = 1_A$

$$
\blacktriangleright f_{\infty}(n) = n_A
$$

. . .

Definition: measuring

$$
\ldots
$$

$$
\blacktriangleright f_{\infty}(0) = 0_B
$$

$$
\blacktriangleright \ f_{\infty}(a+1) = f_{\infty}(a) + 1
$$

Example

$$
\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty
$$

So denote the elements of $\mathsf{Alg}(\mathbb{N}, A)$ by

$$
\blacktriangleright f_0(n) = 0_A
$$

$$
\blacktriangleright \ f_1(0) = 0_A; f_1(sn) = 1_A
$$

$$
\blacktriangleright f_{\infty}(n) = n_A
$$

Definition

. . .

So we call elements of the underlying of $\text{Alg}(A, B)$ n-partial algebra homomorphisms.

- Externalleright Let *n* denote the quotient of N by $m = n$ for all $m \ge n$.
- ▶ Let m° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$
Alg(n, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \varnothing & \text{otherwise.} \end{cases}
$$

What are the non-set-like elements?

- Externalleright Let **n** denote the quotient of N by $m = n$ for all $m \ge n$.
- ▶ Let m° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$
Alg(n, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \varnothing & \text{otherwise.} \end{cases}
$$

$$
\underline{Alg}(\mathbb{n}, A) \cong \begin{cases} \mathbb{N}^{\infty} & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \mathbb{n}^{\circ} & \text{otherwise.} \end{cases}
$$

▶ So there is at least always an *n*-partial homomorphism out of n (which is unique).

What can we do with this? Generalize W-types, i.e., initial algebras.

Definition: C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A such that for all other algebras B there is a unique

$$
C \to \underline{Alg}(A, B).
$$

Examples

For the natural-numbers endofunctor:

- ▶ N is the N[∞]-initial algebra (i.e., initial wrt total algebra homs)
- ▶ m is the m^o-initial algebra (i.e., initial wrt partial algebra homs)

Examples

On a locally presentable symmetric monoidal category C :

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- $p(F \otimes G)$ The tensor of two instances (C closed)
- $(F + G)$ The coproduct of an instance F and an 'F-module' G
- (id^A) The exponential id^A at object A (C cartesian closed)
- $(W$ -type) The polynomial endofunctor associated to a morphism $f: X \rightarrow Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1}: \mathsf{C}\to \mathsf{Set}\ (\mathcal{C}:=\mathsf{Set})$
	- (d.e.s.) A discrete equational system of Leinster (monoidal structure on $\mathcal C$ is cocartesian, $\mathcal C$ has binary products that preserve filtered colimits)

[Overview and background](#page-2-0)
 $\begin{array}{ccc}\n\text{O} & \text{E} \\
\text{E} & \$

Outline

[Overview and background](#page-2-0)

[Endofunctors](#page-8-0)

[Work in progress: generalization](#page-34-0)

000000000

Proof sketch of main theorem¹

Convolution algebra

We get a functor

$$
[-,-]: \text{CoAlg}^{\text{op}} \times \text{Alg} \to \text{Alg}
$$

$$
(C, \chi), (A, \alpha) \mapsto (\underline{\mathcal{C}}(C, A), ?)
$$

where ? is the composite

$$
F\underline{\mathcal{C}}(\mathcal{C}, A) \to \underline{\mathcal{C}}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{\mathcal{C}}(\mathcal{C}, A).
$$

Then we use the adjoint functor theorem to get an enriched hom $\mathsf{Alg}(-, -) : \mathsf{Alg}^{op} \times \mathsf{Alg} \to \mathsf{CoAlg}.$

 $^1\mathcal{C}$ a locally presentable, symmetric monoidal closed category; F an accessible, lax symmetric monoidal endofunctor

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

▶ For $F, G: C \rightarrow \mathcal{D}: (F, G)$ -dialgebras² are enriched in (G, F) -dialgebras.

From

$$
F\underline{\mathcal{C}}(C,A)\to \underline{\mathcal{C}}(FC,FA)\xrightarrow{\alpha^*x*}\underline{\mathcal{C}}(GC,GA)\to G\underline{\mathcal{C}}(C,A).
$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \to GX)$

 3 all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G: C \rightarrow \mathcal{D}: (F, G)$ -dialgebras² are enriched in (G, F) -dialgebras.
- ► For $F: C \to \mathcal{E}, G: \mathcal{D} \to \mathcal{E}: F \downarrow G$ is enriched in $G \downarrow F$.

From

$$
F\underline{\mathcal{C}}(C,A)\to \underline{\mathcal{C}}(FC,FA)\xrightarrow{\alpha^*X*}\underline{\mathcal{C}}(GC',GA')\to G\underline{\mathcal{C}}(C',A').
$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \to GX)$

 3 all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G: C \rightarrow \mathcal{D}: (F, G)$ -dialgebras² are enriched in (G, F) -dialgebras.
- ► For $F: C \to \mathcal{E}, G: \mathcal{D} \to \mathcal{E}: F \downarrow G$ is enriched in $G \downarrow F$.

From

 \blacktriangleright ...

$$
F\underline{\mathcal{C}}(C,A)\to \underline{\mathcal{C}}(FC,FA)\xrightarrow{\alpha^*\chi_*}\underline{\mathcal{C}}(GC',GA')\to G\underline{\mathcal{C}}(C',A').
$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \to GX)$

 3 all categories locally presentable, symmetric monoidal closed; all functors accessible

Summary

We have

- ▶ that algebras are enriched in coalgebras (under certain hypotheses)
- § an interpretation as notion of partial algebra homomorphism (especially in the case **N**)
- § many examples
- ▶ a more refined notion of initial algebra
- \blacktriangleright a generalization ...

[Overview and background](#page-2-0) **[Endofunctors](#page-8-0)** Endofunctors **[Work in progress: generalization](#page-34-0)**
 0000

Thank you!