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Goal

Goal

To develop a directed type theory.

To formalize theorems about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes
§ Rewriting

Criteria

§ Directed paths are introduced as terms of a type former, hom,
to be added to Martin-Löf type theory

§ Transport along terms of hom

§ Independence of hom and Id
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§ Transport along terms of hom

§ Independence of hom and Id



Goal

Goal

To develop a directed type theory.

To formalize theorems about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes

§ Rewriting

Criteria

§ Directed paths are introduced as terms of a type former, hom,
to be added to Martin-Löf type theory
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§ Transport along terms of hom

§ Independence of hom and Id



Goal

Goal

To develop a directed type theory.

To formalize theorems about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes
§ Rewriting

Criteria

§ Directed paths are introduced as terms of a type former, hom,
to be added to Martin-Löf type theory
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What does directed mean?

Syntactically

Martin-Löf’s identity type is symmetric/undirected since for any
type T , and terms a, b : T , there is a function

i : IdT pa, bq Ñ IdT pb, aq

so that any path p : IdT pa, bq can be inverted to obtain a path
ip : IdT pb, aq.

§ Can think of these terms as undirected paths

§ Can we design a type former of directed paths that resembles
Id but without its inversion operation i?



What does directed mean?

Syntactically
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What does directed mean?

Theorem

C cartesian closed category. A functorial reflexive relation

1C
r // Id

ε0ˆε1 // 1C ˆ 1C

models identity types if and only if the mapping path space
factorization

X
f // Y ù X

1ˆrf // X ˆY IdpY q
ε1 // Y

generates a weak factorization system on C where all red (resp.
blue) maps are in the left (resp. right) class.



What does directed mean?

Theorem

C cartesian closed category. A functorial reflexive relation

1C
r // Id

ε0ˆε1 // 1C ˆ 1C

models identity types if and only if it is

1. transitive,

2. homotopical,

3. symmetric.



What does directed mean?

Semantically

higher groupoids

higher categories
(undirected paths Ď

directed paths)

directed spaces
(directed paths Ď

undirected paths)
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Directed spaces

Rough definition

A space together with a subset of its paths that are marked as
‘directed’
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Application: concurrency

Concurrent processes can be represented by directed spaces.

B

A

piA, iB q

pfA, fB q

§ A,B are two processes

§ m, n are two memory locations

§ which can be locked pLq or unlocked pUq
by each process

Fundamental questions:

§ Which states are safe? (Predicate Spxq on X op.)

§ Which states are reachable? (Predicate Rpxq on X .)
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Rules for hom: core and op

T TYPE

T core
TYPE

T TYPE

T op
TYPE

T TYPE t : T core

it : T

T TYPE t : T core

iopt : T op



Rules for hom: formation

T TYPE s : T op t : T

homT ps, tq TYPE

Id formation

T TYPE s : T t : T

IdT ps, tq TYPE
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Syntactic results

§ Transport: for a dependent type t : T $ Sptq:

t : T core, t 1 : T , f : homT pi
opt, t 1q, s : Spitq
$ transportRps, f q : Spt 1q

§ Composition: for a type T :

r : T op, s : T core, t : T , f : homT pr , isq, g : homT pi
ops, tq

$ compRpf , gq : homT pr , tq

§ With Σ types, we can define

ReachablepT q :“ Σx :T homT pi , xq

SafepT q :“ Σx :T op homT px , f q

for any type T with terms i : T op, f : T .
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The interpretation

§ Use the framework of comprehension categories

§ Dependent types are represented by functors T : Γ Ñ Cat.

§ Dependent terms are represented by natural transformations

Γ

˚ ))

T

77�� t Cat

where ˚ : Γ Ñ Cat is the functor which takes everything to
the one-object category.

§ Context extension is represented by the Grothendieck
construction which takes each functor T : Γ Ñ Cat to the
Grothendieck opfibration

πΓ :

ż

Γ
T Ñ Γ.



Interpreting core and op in the empty context

T TYPE

T core
TYPE T op

TYPE

T TYPE t : T core

it : T iopt : T op

For any category T ,

§ T core :“ obpT q

§ T op :“ T op

§ i : T core Ñ T and iop : T core Ñ T op are the identity on
objects.



Interpreting hom formation and introduction

T TYPE s : T op t : T

homT ps, tq TYPE

T TYPE t : T core

1t : homT pi
opt, itq TYPE

For any category T ,

§ Take the functor

hom : T op ˆ T Ñ Set ãÑ Cat.

§ Take the natural transformation

T core

˚
**

hom ˝piopˆiq

44�� 1‚ Cat

where each component 1t : ˚ Ñ hompt, tq picks out the
identity morphism of t.



Interpreting right hom elimination and computation
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§ Use the fact that the subcategory
T core is ‘initial’:

§ for every ps, t, f q P
ş

T coreˆT
hom

there is a unique morphism
p1s , f q : ps, s, 1sq Ñ ps, t, f q with
domain in T core

§ Set eRpdqps,t,f q :“ Dp1s , f qdps,s,1sq
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Interpreting left hom elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq

§ Replace T by T op and apply right hom elimination and
computation.
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A homotopical perspective

While the homotopy theory of isomorphisms in categories

C Ñ Cp–q Ñ C ˆ C

provides an interpretation of Martin-Löf’s identity type, the
homotopy theory of morphisms in categories

C Ñ CpÑÑÑq Ñ C ˆ C

provides an interpretation of this hom former.



The weak factorization system

§ Let p–q denote the category with two objects and one
isomorphism between them.

§ Let pÑÑÑq denote the category with two objects and one
morphism between them.

§ Then factorize the codiagonal of the one-point category in
two ways

˚ ` ˚ Ñ p–q Ñ ˚ ˚ `˚ Ñ pÑÑÑq Ñ ˚

§ which produces a factorization of any diagonal in two ways
which each generate weak factorization systems.

C Ñ Cp–q Ñ C ˆ C C Ñ CpÑÑÑq Ñ C ˆ C

§ The first gives an interpretation of the Id type in Cat.

§ The second underlies this interpretation of the hom type in
Cat.



The weak factorization system continued

§ The right class of this weak
factorization system are those
functors p : E Ñ B which have the
enriched right lifting property

˚

DOM

��

// E

p

��
pÑÑÑq //

==

B

§ so all Grothendieck opfibrations (dependent projections) are in
the right class.

§ The functor 1‚ : T core ãÑ
ş

T coreˆT hom is the left part of the
factorization of

i : T core Ñ T .

§ Then the right hom elimination and computation rule arises
from the weak factorization system.

T core
� _

1‚

��

d //
ş

ş

TcoreˆT hom D

π

��
ş

T coreˆT hom

eRpdq
77

ş

T coreˆT hom
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Summary & future work

Summary

We have:

§ a directed type theory

§ with a model in Cat.

Future work

We need to:
§ integrate this into traditional Martin-Löf type theory

§ integrate Id and hom in the same theory
§ specify Σ, Π, etc

§ find interpretations in categories of directed spaces
§ build ‘directed’ weak factorization systems
§ build universes
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Thank you!
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