Towards a type theory for directed homotopy theory

Paige Randall North

Ohio State University

10 July 2018

Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

Goal

To develop a directed type theory.

Goal

To develop a directed type theory.

Goal

To develop a directed type theory.

To formalize theorems about:

Higher category theory

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting

Goal

To develop a directed type theory.

To formalize theorems about:

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting

Criteria

 Directed paths are introduced as terms of a type former, hom, to be added to Martin-Löf type theory

Goal

To develop a directed type theory.

To formalize theorems about:

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting

Criteria

- Directed paths are introduced as terms of a type former, hom, to be added to Martin-Löf type theory
- Transport along terms of hom

Goal

To develop a directed type theory.

To formalize theorems about:

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting

Criteria

- Directed paths are introduced as terms of a type former, hom, to be added to Martin-Löf type theory
- Transport along terms of hom
- Independence of hom and Id

Syntactically

Martin-Löf's identity type is symmetric/undirected since for any type T, and terms a,b:T, there is a function

$$i: \operatorname{Id}_{\mathcal{T}}(a,b) \to \operatorname{Id}_{\mathcal{T}}(b,a)$$

so that any path $p: Id_T(a, b)$ can be inverted to obtain a path $ip: Id_T(b, a)$.

Syntactically

Martin-Löf's identity type is symmetric/undirected since for any type T, and terms a, b : T, there is a function

$$i: \operatorname{Id}_{\mathcal{T}}(a,b) \to \operatorname{Id}_{\mathcal{T}}(b,a)$$

so that any path $p: Id_T(a, b)$ can be inverted to obtain a path $ip: Id_T(b, a)$.

Can think of these terms as undirected paths

Syntactically

Martin-Löf's identity type is symmetric/undirected since for any type T, and terms a, b : T, there is a function

$$i: \operatorname{Id}_{\mathcal{T}}(a,b) \to \operatorname{Id}_{\mathcal{T}}(b,a)$$

so that any path $p : Id_T(a, b)$ can be inverted to obtain a path $ip : Id_T(b, a)$.

- Can think of these terms as undirected paths
- Can we design a type former of *directed* paths that resembles Id but without its inversion operation i?

Theorem

 ${\cal C}$ cartesian closed category. A functorial reflexive relation

$$1_{\mathcal{C}} \xrightarrow{r} Id \xrightarrow{\epsilon_0 \times \epsilon_1} 1_{\mathcal{C}} \times 1_{\mathcal{C}}$$

models identity types if and only if the mapping path space factorization

$$X \xrightarrow{f} Y \rightsquigarrow X \xrightarrow{1 \times rf} X \times_Y Id(Y) \xrightarrow{\epsilon_1} Y$$

generates a weak factorization system on C where all red (resp. blue) maps are in the left (resp. right) class.

Theorem

 $\mathcal C$ cartesian closed category. A functorial reflexive relation

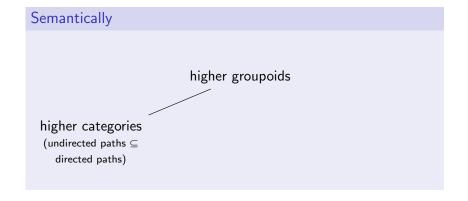
$$1_{\mathcal{C}} \xrightarrow{r} Id \xrightarrow{\epsilon_0 \times \epsilon_1} 1_{\mathcal{C}} \times 1_{\mathcal{C}}$$

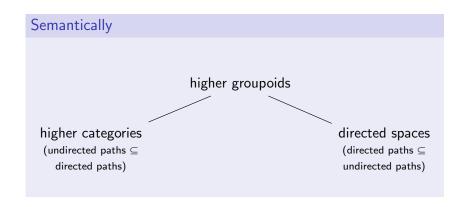
models identity types if and only if it is

- 1. transitive,
- 2. homotopical,
- 3. symmetric.

Semantically

higher groupoids





Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

Directed spaces

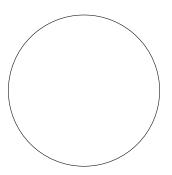
Rough definition

A space together with a subset of its paths that are marked as 'directed'

Directed spaces

Rough definition

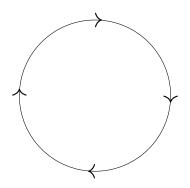
A space together with a subset of its paths that are marked as 'directed'

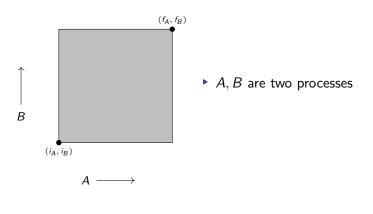


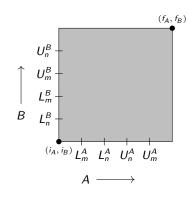
Directed spaces

Rough definition

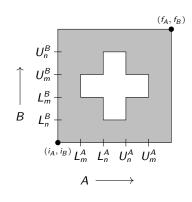
A space together with a subset of its paths that are marked as 'directed'



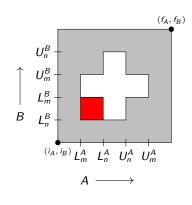




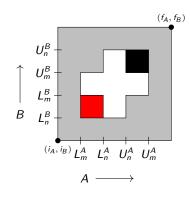
- A, B are two processes
- ▶ *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process



- ► *A*, *B* are two processes
- ightharpoonup m, n are two memory locations
- which can be locked (L) or unlocked (U) by each process

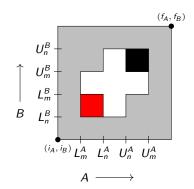


- A, B are two processes
- ightharpoonup m, n are two memory locations
- which can be locked (L) or unlocked (U) by each process



- ▶ A, B are two processes
- ▶ *m*, *n* are two memory locations
- ▶ which can be locked (L) or unlocked (U) by each process

Concurrent processes can be represented by directed spaces.



- ▶ *A*, *B* are two processes
- ▶ *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

Fundamental questions:

- ▶ Which states are safe? (Predicate S(x) on X^{op} .)
- Which states are reachable? (Predicate R(x) on X.)

Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

Rules for hom: core and op

$$T$$
 TYPE T^{core} TYPE T^{core} TYPE T^{op} TYPE T^{core} T TYPE T^{core} T TYPE T^{core}

 $\frac{T \text{ TYPE} \qquad t: T^{\mathsf{core}}}{i^{\mathsf{op}}t: T^{\mathsf{op}}}$

Rules for hom: formation

$$\frac{T \text{ TYPE } s: T^{\text{op}} \quad t: T}{\mathsf{hom}_T(s,t) \text{ TYPE}}$$

Rules for hom: formation

$$\frac{T \text{ TYPE } s: T^{\text{op}} \quad t: T}{\mathsf{hom}_T(s,t) \text{ TYPE}}$$

Id formation

$$\frac{T \quad \text{TYPE} \quad s:T \quad t:T}{\text{Id}_T(s,t) \quad \text{TYPE}}$$

Rules for hom: introduction

$$\frac{\textit{T} \quad \text{TYPE} \quad \textit{t} : \textit{T}^{\text{core}}}{1_{\textit{t}} : \text{hom}_{\textit{T}}(\textit{i}^{\text{op}}\textit{t}, \textit{it}) \quad \text{TYPE}}$$

Rules for hom: introduction

$$\frac{\textit{T} \quad \text{TYPE} \quad \textit{t} : \textit{T}^{\text{core}}}{1_{\textit{t}} : \text{hom}_{\textit{T}}(\textit{i}^{\text{op}}\textit{t}, \textit{it}) \quad \text{TYPE}}$$

Id introduction

$$rac{T}{r_t: \operatorname{Id}_T(t,t)} rac{t:T}{\operatorname{TYPE}}$$

Rules for hom: right elimination and computation

$$\begin{array}{ccc} T & \text{TYPE} & s: T^{\text{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash D(f) & \text{TYPE} \\ & & s: T^{\mathsf{core}} \vdash d(s) : D(1_s) \\ \hline & s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash e_R(d, f) : D(f) \\ & s: T^{\mathsf{core}} \vdash e_R(d, 1_s) \equiv d(s) : D(1_s) \end{array}$$

Rules for hom: right elimination and computation

$$\begin{array}{ccc} T & \texttt{TYPE} & s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_{T}(i^{\mathsf{op}}s, t) \vdash D(f) & \texttt{TYPE} \\ & & s: T^{\mathsf{core}} \vdash d(s) : D(1_{s}) \\ \hline & s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_{T}(i^{\mathsf{op}}s, t) \vdash e_{R}(d, f) : D(f) \\ & s: T^{\mathsf{core}} \vdash e_{R}(d, 1_{s}) \equiv d(s) : D(1_{s}) \end{array}$$

Id elimination and computation

$$\frac{T \text{ TYPE}}{s:T,t:T,f:\operatorname{Id}_T(s,t) \vdash D(f) \text{ TYPE} \qquad s:T \vdash d(s):D(r_s)} \\ \frac{s:T,t:T,f:\operatorname{Id}_T(s,t) \vdash j(d,f):D(f)}{s:T \vdash j(d,r_s) \equiv d(s):D(r_s)}$$

Rules for hom: left elimination and computation

$$\frac{T \text{ TYPE } s: T^{\text{op}}, t: T^{\text{core}}, f: \mathsf{hom}_{\mathcal{T}}(s, it) \vdash D(f) \text{ TYPE}}{s: T^{\text{core}} \vdash d(s): D(1_s)} \\ \frac{s: T^{\text{op}}, t: T^{\text{core}}, f: \mathsf{hom}_{\mathcal{T}}(s, it) \vdash e_L(d, f): D(f)}{s: T^{\text{core}} \vdash e_L(d, 1_s) \equiv d(s): D(1_s)}$$

Rules for hom: left elimination and computation

$$\frac{T \text{ TYPE } s: T^{\text{op}}, t: T^{\text{core}}, f: \mathsf{hom}_T(s, it) \vdash D(f) \text{ TYPE}}{s: T^{\text{core}} \vdash d(s): D(1_s)} \\ \frac{s: T^{\text{core}} \vdash d(s): D(1_s)}{s: T^{\text{core}}, t: T^{\text{core}}, f: \mathsf{hom}_T(s, it) \vdash e_L(d, f): D(f)} \\ s: T^{\text{core}} \vdash e_L(d, 1_s) \equiv d(s): D(1_s)$$

Id elimination and computation

$$\frac{T \text{ TYPE}}{s:T,t:T,f:\operatorname{Id}_{T}(s,t) \vdash D(f) \text{ TYPE} \qquad s:T \vdash d(s):D(r_{s})}{s:T,t:T,f:\operatorname{Id}_{T}(s,t) \vdash j(d,f):D(f)}\\ s:T \vdash j(d,r_{s}) \equiv d(s):D(r_{s})$$

Syntactic results

▶ Transport: for a dependent type $t : T \vdash S(t)$:

$$t: T^{\mathsf{core}}, t': T, f: \mathsf{hom}_{\mathcal{T}}(i^{\mathsf{op}}t, t'), s: S(it) \\ \vdash \mathsf{transport}_{\mathsf{R}}(s, f): S(t')$$

Syntactic results

▶ Transport: for a dependent type $t : T \vdash S(t)$:

```
\begin{aligned} t : T^{\mathsf{core}}, t' : T, f : \mathsf{hom}_{\mathcal{T}}(i^{\mathsf{op}}t, t'), s : S(it) \\ &\vdash \mathsf{transport}_{\mathsf{R}}(s, f) : S(t') \end{aligned}
```

Composition: for a type T:

$$r: T^{op}, s: T^{core}, t: T, f: hom_T(r, is), g: hom_T(i^{op}s, t)$$

 $\vdash comp_R(f, g): hom_T(r, t)$

Syntactic results

▶ Transport: for a dependent type $t : T \vdash S(t)$:

```
\begin{aligned} t : T^{\mathsf{core}}, t' : T, f : \mathsf{hom}_{\mathcal{T}}(i^{\mathsf{op}}t, t'), s : \mathcal{S}(it) \\ &\vdash \mathsf{transport}_{\mathsf{R}}(s, f) : \mathcal{S}(t') \end{aligned}
```

Composition: for a type T:

$$r: T^{\text{op}}, s: T^{\text{core}}, t: T, f: \mathsf{hom}_{T}(r, is), g: \mathsf{hom}_{T}(i^{\text{op}}s, t) \\ \vdash \mathsf{comp}_{\mathsf{R}}(f, g): \mathsf{hom}_{T}(r, t)$$

• With Σ types, we can define

$$Reachable(T) := \Sigma_{x:T} hom_T(i,x)$$

$$Safe(T) := \Sigma_{x:T^{op}} hom_T(x,f)$$

for any type T with terms $i: T^{op}, f: T$.

Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

The interpretation

- Use the framework of comprehension categories
- ▶ Dependent types are represented by functors $T : \Gamma \rightarrow Cat$.
- Dependent terms are represented by natural transformations

where $*: \Gamma \to \mathit{Cat}$ is the functor which takes everything to the one-object category.

▶ Context extension is represented by the Grothendieck construction which takes each functor $T:\Gamma \to Cat$ to the Grothendieck opfibration

$$\pi_{\Gamma}: \int_{\Gamma} T \to \Gamma.$$

Interpreting core and op in the empty context

$$\frac{T \text{ TYPE}}{T^{\text{core}} \text{ TYPE}} \frac{T \text{ TYPE}}{it: T} \frac{t: T^{\text{core}}}{i^{\text{op}}t: T^{\text{op}}}$$

For any category T,

- $T^{core} := ob(T)$
- $T^{op} := T^{op}$
- $i: T^{core} \to T$ and $i^{op}: T^{core} \to T^{op}$ are the identity on objects.

Interpreting hom formation and introduction

$$\frac{T \text{ TYPE } s: T^{\mathsf{op}} \quad t: T}{\mathsf{hom}_{T}(s,t) \text{ TYPE}} \qquad \frac{T \text{ TYPE } t: T^{\mathsf{core}}}{1_{t}: \mathsf{hom}_{T}(i^{\mathsf{op}}t,it) \text{ TYPE}}$$

For any category T,

Take the functor

hom :
$$T^{op} \times T \rightarrow Set \hookrightarrow Cat$$
.

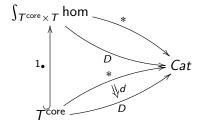
Take the natural transformation

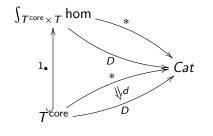
$$T^{\text{core}} \underbrace{\psi_{1\bullet}}_{\text{hom } \circ (i^{\text{op}} \times i)} Cat$$

where each component $1_t : * \rightarrow \mathsf{hom}(t, t)$ picks out the identity morphism of t.

$$\frac{T \text{ TYPE } s: T^{\text{core}}, t: T, f: \text{hom}_{T}(i^{\text{op}}s, t) \vdash D(f) \text{ TYPE}}{s: T^{\text{core}} \vdash d(s): D(1_{s})} \\ \frac{s: T^{\text{core}}, t: T, f: \text{hom}_{T}(i^{\text{op}}s, t) \vdash e_{R}(d, f): D(f)}{s: T^{\text{core}} \vdash e_{R}(d, 1_{s}) \equiv d(s): D(1_{s})}$$

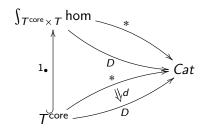
$$\begin{array}{ccc} T & \text{TYPE} & s: T^{\text{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash D(f) & \text{TYPE} \\ & & s: T^{\mathsf{core}} \vdash d(s) : D(1_s) \\ \hline & s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash e_R(d, f) : D(f) \\ & s: T^{\mathsf{core}} \vdash e_R(d, 1_s) \equiv d(s) : D(1_s) \end{array}$$



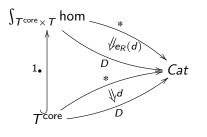


Use the fact that the subcategory T^{core} is 'initial':

$$\begin{array}{ll} T & \text{TYPE} & s: T^{\text{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash D(f) & \text{TYPE} \\ & s: T^{\mathsf{core}} \vdash d(s) : D(1_s) \\ \hline & s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_T(i^{\mathsf{op}}s, t) \vdash e_R(d, f) : D(f) \\ & s: T^{\mathsf{core}} \vdash e_R(d, 1_s) \equiv d(s) : D(1_s) \end{array}$$



- Use the fact that the subcategory T^{core} is 'initial':
 - for every $(s,t,f) \in \int_{T^{\mathsf{core}} \times T} \mathsf{hom}$ there is a unique morphism $(1_s,f): (s,s,1_s) \to (s,t,f)$ with domain in T^{core}



- Use the fact that the subcategory T^{core} is 'initial':
 - for every $(s,t,f) \in \int_{T^{\mathsf{core}} \times T} \mathsf{hom}$ there is a unique morphism $(1_s,f): (s,s,1_s) \to (s,t,f)$ with domain in T^{core}
- Set $e_R(d)_{(s,t,f)} := D(1_s,f)d_{(s,s,1_s)}$

$$\frac{T \text{ TYPE } s: T^{\text{op}}, t: T^{\text{core}}, f: \mathsf{hom}_T(s, it) \vdash D(f) \text{ TYPE}}{s: T^{\text{core}} \vdash d(s): D(1_s)} \\ \frac{s: T^{\text{op}}, t: T^{\text{core}}, f: \mathsf{hom}_T(s, it) \vdash e_L(d, f): D(f)}{s: T^{\text{core}} \vdash e_L(d, 1_s) \equiv d(s): D(1_s)}$$

Replace T by T^{op} and apply right hom elimination and computation.

Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

A homotopical perspective

While the homotopy theory of isomorphisms in categories

$$\mathcal{C} \to \mathcal{C}^{(\cong)} \to \mathcal{C} \times \mathcal{C}$$

provides an interpretation of Martin-Löf's identity type, the homotopy theory of morphisms in categories

$$\mathcal{C} \to \mathcal{C}^{(\to)} \to \mathcal{C} \times \mathcal{C}$$

provides an interpretation of this hom former.

The weak factorization system

- Let (≅) denote the category with two objects and one isomorphism between them.
- Let (→) denote the category with two objects and one morphism between them.
- Then factorize the codiagonal of the one-point category in two ways

$$*+* \rightarrow (\cong) \rightarrow * \qquad *+* \rightarrow (\rightarrow) \rightarrow *$$

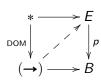
which produces a factorization of any diagonal in two ways which each generate weak factorization systems.

$$\mathcal{C} \to \mathcal{C}^{(\cong)} \to \mathcal{C} \times \mathcal{C} \qquad \qquad \mathcal{C} \to \mathcal{C}^{(\to)} \to \mathcal{C} \times \mathcal{C}$$

- ▶ The first gives an interpretation of the ld type in Cat.
- ► The second underlies this interpretation of the hom type in Cat.

The weak factorization system continued

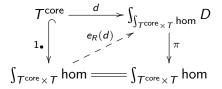
The right class of this weak factorization system are those functors p : E → B which have the enriched right lifting property



- so all Grothendieck opfibrations (dependent projections) are in the right class.
- ▶ The functor $1_{\bullet}: T^{\mathsf{core}} \hookrightarrow \int_{T^{\mathsf{core}} \times T} \mathsf{hom}$ is the left part of the factorization of

$$i: T^{core} \rightarrow T$$

▶ Then the right hom elimination and computation rule arises from the weak factorization system.



Outline

Introduction

Directed homotopy theory

The hom type former

An interpretation in the category of categories

A homotopical perspective

Conclusion

Summary

We have:

a directed type theory

Summary

We have:

- a directed type theory
- with a model in Cat.

Summary

We have:

- a directed type theory
- with a model in Cat.

Future work

We need to:

- ▶ integrate this into traditional Martin-Löf type theory
 - integrate Id and hom in the same theory
 - specify Σ, Π, etc

Summary

We have:

- a directed type theory
- with a model in Cat.

Future work

We need to:

- integrate this into traditional Martin-Löf type theory
 - integrate Id and hom in the same theory
 - specify Σ, Π, etc
- find interpretations in categories of directed spaces
 - build 'directed' weak factorization systems
 - build universes

Further Reading

L. Fajstrup et al.

Directed Algebraic Topology and Concurrency.
Springer International Publishing, 2016.

E. Finster and S. Mimram.

A Type-Theoretical Definition of Weak $\omega\textsc{-}\mathsf{Categories}.$

2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, 1–12, 2017.

D. R. Licata and R. Harper.

2-Dimensional Directed Type Theory.

Electronic Notes in Theoretical Computer Science, 276 (2011), pp. 263-289.

A. Nyuts.

Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance. MA thesis. KU Leuven. 2015.

E. Riehl and M. Shulman.

A type theory for synthetic ∞ -categories.

Higher Structures, 1(1):116-193, 2017.

M. Warren.

Directed Type Theory Talk at IAS, 10 April 2013.