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Outline

© What is / why (homotopy) type theory?



Why type theory?

® Homotopy type theory is the logic of homotopy theory
¢ Equality in the type theory corresponds to homotopy

® We don’t have recourse to ‘classical’ equality
® We are forced to do everything up to homotopy (unless we can
figure out a way to do it fibrewise)

® Proofs are computer-checkable.



What is type theory?

® Type theory is a language for mathematics, akin to category
theory.

® Sentences are of the following form:
® a :A,..a,:A,FB(a,..,a,) type
®a:A,..a,:A,Fb(a,..,a,):B(a,..,a,)

® We conflate mathematical objects and mathematical statements.
® n:NFisEven(n) type
® n:NFe(n):isEven(a2n)
® X :UFisContr(X) type
® X:UFc(X):isContr(CX) type



Interpretations of type theory

® Examples:

S8 X XS

n

: N FisEven(n) type
:NFe(n) : isEven(2n)

: Ut isContr(X) type
: Uk ¢(X) : isContr(CX) type

: N Vect, (N) type
:NFo(n): Vect,(N) type

® There are many interpretations of dependent type theory:

Logical
Set theoretic
Homotopical

Contexts
hypotheses
indices
base space

Types
predicates
indexed sets
total space

Terms
proofs
sections
sections




Type formers

® We can define the natural numbers, booleans, the circle,
(dependent) functions, (dependent) products and coproducts as
initial objects in the following way.
Natural numbers
Fx:N
F N type Fo:N Fsx:N

x : NF D(x) type Fz:D(o) x:N,y :D(x)F o(y) : D(sx)

x:NFd(x): D(x)
Fd(o)=2:D(0) x:NF o(d(x)) = d(sx) : D(sx)




The identity type
Identity type
FA type Fab:A FA type Fa:A

Fa=,b Fro:a=4a
FAtype x,y:A, p:x=4ytFD(p)type x:AF p(x):D(r,)

xy:A, p:x=4,ytd{p):D(p)
x:AF p(x)=d(r,):D(ry)

® For a homotopy theorist, there are two important things in
homotopy theory: = (homotopy) and F (fibration).
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© What is / why univalence?



The univalence axiom

® We can prove for any x : B F E(x) type and any b =5 c, that
E(b) =y E(c).
® (A type x: B}l E(x) type is equivalently a function E : B — U.)
® What is an equality E(b) = E(c)?
® We can separately define a type of equivalences E ~ F to consist of

terms (f,g,h,i) where f :ES F: g, h(x) : fgx =px, i(y) : y =5 &fy
forallx:F,y:E.

The univalence axiom (Voevodsky)

For any two types E, F, the canonical function
E=yF—>E~F

is an equivalence.

'This is a lie: we actually want an adjoint equivalence.



Univalence in general

Synthetic vs. analytic equalities

In type theory, we always have a (synthetic) equality type between
a,b:T
a =T b.

K

Depending on the type T, we might have a type of “analytic equalities’
a=bh.
A “univalence principle” for this T and this = states that
(a=rb)— (a=yb)

is an equivalence.



Univalence in general

Synthetic vs. analytic equalities

In type theory, we always have a (synthetic) equality type between
a,b:T
a =T b.

Depending on the type T, we might have a type of “analytic equalities”
a=bh.
A “univalence principle” for this T and this = states that
(a=7b) - (a=;b)
is an equivalence.

The univalence axiom is a univalence principle where T = U and = is
set to ~, equivalence between types.



Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a=b) « (VP.P(a) <> P(b))
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® This holds in MLTT.



Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a=r b)<—>( [1 P(a)zp(b))

P:T-u

® This holds in MLTT.

® Given a ‘univalence principle’ (a =¢ b) ~ (a = b), we would find a
structure identity principle (in the sense of Aczel):

(ab) — ( ]_[ P(a) zP(b)).

P:T-u



Goal

Our goal

To define a large class of (higher) structures and a notion of equivalence
between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using ideas from:
® First Order Logic with Dependent Sorts, Makkai, 1995.

® Univalent categories and the Rezk completion, Ahrens, Kapulkin,
Shulman, 2015.
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@ Univalent categories



h-levels
We can stratify (some) types into h-levels.

o: T is contractible if
isContr(T) :=X.rI,.r c =7y
1: T is a proposition if
isProp(T) := 11, ,.risContr(x = y)

2: T is asetif
isSet(T) :=TI1,,.risProp(x =7 y)

3: T is a groupoid if
isGpd(T) := I, ,.risSet(x =1 y)
n+1: Tis of h-level n +1 if

ishlevel(n +1)(T) := I, .rishlevel(n)(x =1 y)



Categories

Definition (Ahrens, Kapulkin, Shulman 2015)
A category € consists of
® ob%:U
® x,y:0b% Fhom(x,y) : Set
® x:0b% F 1, : hom(x,x)
® x,y,%:0b%,f : hom(x,y),g: hom(y,z) - gof : hom(x,2)
® x,y:0b%,f :hom(x,y) - rUni(f) : 1, o f =pomeeyy f
® x,y :0b%,f :hom(x,y) - IUni(f) : f 0 1, =pom(xy) f

® w,x,y,z:0b%,f : hom(w,x),g : hom(x,y),h : hom(y,2) -
ass(f, &, h) : (h Og) of ~hom(w,z) ho (g Of)



Univalent categories

Definition (Ahrens, Kapulkin, Shulman 2015)

A category € is a univalent category if for all x,y : ob%6, the canonical
function

O =obes ¥) = (x =)

is an equivalence.

Theorem (Ahrens, Kapulkin, Shulman 2015)

Given two univalent categories 6 and 2, the canonical function
(C=ycat D) = (C~D)

is an equivalence.



A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."



A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Example

There are statements that can be made in set theory that distinguish
the following two categories, but there are none in type theory (when
interpreting them as univalent categories):

et

[ ] [ ] ) [ ]

el



More precise goal

Our more precise goal

To define a large class of univalent (higher) structures and a notion of
equivalence between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using ideas from:
® First Order Logic with Dependent Sorts, Makkai, 1995.

® Univalent categories and the Rezk completion, Ahrens, Kapulkin,
Shulman, 2015.
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ZL.i-structures

Instead of thinking of 1,, o as functions, we can
think of them as relations I, T. We can define a
category % to be:

°* 0:U

x,y:0FAM,y):U

x:0,f AL, x)FL(f): U

xY,2:0,f :Alx,y), g : A(y,2),h : A(x,2) F
Ty:(f,80) 1 U

OfF—><¢+—~



ZL.i-structures

Instead of thinking of 1,, o as functions, we can
think of them as relations I, T. We can define a
category % to be:

°* 0:U \
x,y:0FAM,y):U

x:0,f AL, x)FL(f): U
Tx,y,z(f:g: h) U

OfF—><¢+—~

We want to add axioms such as

V(x,y,2:0).¥(f : A(x,¥)).Y(g : A(y,2)).V(h, k' : A(x, 2)).
Tyy:(f,8h) = Ty ,(f,8,h") — (h=h")

(composites are unique), so we add an equality ‘predicate’.
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ZL.i-structures

Instead of thinking of 1,, o as functions, we can
think of them as relations I, T. We can define a
category % to be:

°* 0:U

x,y:0FAM,y):U

x:0,f AL, x)FL(f): U

xY,2:0,f :Alx,y), g : A(y,2),h : A(x,2) F
Trys(f,8,h) 1 U

* x,y:0,f,8:Alxy)FE, (f,g): U

e
o\

We want to add axioms such as

V(x,y,2:0).¥(f : A(x,¥)).Y(g : A(y,2)).V(h, k' : A(x, 2)).
Tyy:(f,8 1) = Ty ,(f,8,h") — E(h, 1)

(composites are unique), so we add an equality ‘predicate’.



Signatures

Inverse category

An inverse category is a strict category .# and a function p : .¢ — Nat®P
whose fibers are discrete.
The height of an inverse category (£, p) is the maximum value of p.

Signatures

Signatures are inverse categories of finite height.

M A I E M
() () \ll/
(0] 0 0]
zMagma gProset zGroup

Structures
An ¥ -structure for a signature £ is a ‘Reedy fibrant diagram’ £ — U.



Indiscernibility

Definition

Given an ¢ -structure M : & — U, and an object S of £, we say that
two elements x,y : MS are indiscernible if substituting x for y in any
type that depends on (i.e. object with a morphism to) S produces
equivalent types.

Definition

An Z-structure M : ¥ — U is univalent if for any x,y : MS, the type of
indiscernibilities between x and y is equivalent to the type of equalities
between x and y.



Example

Let %, be the signature for categories, and ¥ a univalent Z_,;
structure.

® Any two terms x : O,f : A(x,x) Fi,j : L(f) are
indiscernible because there are no objects

T I E
with a morphism to I. So each L.(f) is a \ l ‘/
proposition. A

® Similarly, any two terms in T, ,(f, g, h) or \u/
E.,(f,g) are indiscernible. So each o
Tyy 2(f, 8, h), Ex,(f,g) is a proposition.

® Two ‘morphisms’ x,y : ob¥¢ I f,g : A(x,y) are indiscernible if
(among other things) E, (a,f) = E, (a,g) for all a : A(x,y). The
axioms for E say (1) this implies E,.,(f, g), and (2) that E,(f, )
implies f and g are indiscernible (E is a congruence for E, T, I).
Thus, f = g is equivalent to E, (f, g)-



Univalence at O

® The indiscernibilities between a,b : €O consist of
1. @ye : GA(x,a) >~ FA(x,b) for each x : €0
2. oy GA(a,2) ~ €A(b,2) for each z: €O
3. Qoe : FA(a,a) ~ €A(b,b)
4. The following for all appropriate w,x,y,2,f, g, h:

Teyalfs8 1) & Ty b (s dye(8), Pxa(R)) 1(f) = Ip(Pee(f))
Tx,a,z(f: 8 h) Aad Tx,b,z(¢x0(f): ¢oz(g)7 h) Ex,a(f’ g) s Ex,b(¢x0(f): ¢xo(g))
Ta,z,w(f> & h) A Tb,z,w(¢oz(f)’g’ ¢ow(h)) Ea,x(f’ g) A Eb,x(¢ox(f)> ¢-x(g))

Teaalf>8:1) = Topp(Pxe (), Pael8); Pra (R)) Eqa(f,8) < Epp(daa(f), P4a(8))
Toa(f>8:1) = Toxp(Pex(f), Pre(8); P (h))
To0x(f,8:1) = Topx(Pee(f), Por(8); Pax())
To,a0,0(f:8:1) = Tppp(Pae(f); Pae(8), Pue(R))



Univalent Z,,-structures continued

Proposition

The type of indiscernibilities between a,b : O is equivalent to a = b.

Proof.
The isomorphisms ¢, : A(x,a) = A(x, b) are natural by

Tx,_y,a(f: &> h) X Txy,b(f: ¢yo (g)) ¢xo(h))
(saying ¢y.(g) of = ¢re(gof)). The rest of the data is redundent.
Thus, in a univalent %,,-structure, (a = b) ~ (a = b).

Theorem

Univalent %, ,,-structures are equivalent to the univalent categories of
Ahrens-Kapulkin-Shulman.



Categorical equivalences

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence F : € ~ 9 of
Zear+e-Structures consists of surjections

® FO: 60 -» 920

® FA: 6A(x,y) » 9A(Fx, Fy) for every x,y : €0

® FT: €T(f,g h) » DT(Ff,Fg,Fh) for all
f:6Ax,Yy),g: €AY,2),h : €A(x,2)

® FE: 6E(f,g) » 9E(Ff,Fg) for all f,g : CA(x,y)

® FI: 6I(f) » 2I(Ff) for all f : €A(x,x)
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Categorical equivalences
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Categorical equivalences

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence F : 6 ~ 9 of univalent
Zear+e-Structures consists of surjections

® FO: 60 -» 920

® FA: 6A(x,y)=2A(Fx, Fy) for every x,y : €0

® FT: 6€T(f,g h)—2T(Ef,Fg, Fh) for all
f:6Ax,Yy),g: €A,2),h : €A(x,2)

® FE: (f = g)«—(Ff =Fg) for all f,g : €A(x,y)

® FI: GI(f)«—2I(Ff) for all f : €A(x,x)



Equivalences in general

Definition (equivalence)

An equivalence M ~ N between two £ -structures is a very
split-surjective morphism M — N.

Theorem
Given two univalent . -structures M and N,

(M=N)=~(M=~N).

Theorem

For a signature L : Sig(n), the type of univalent L-structures is of h-level
n+1.



Opetopic bicategories
The signature is the following plus a unary predicate U, , and a binary

predicate E, , on each C,, ;.

1,2,2

Co, C Cs,

2,

~y# %
N\l

Univalence makes each T a proposition, each C, , a set with equality
given by E, ,, C, the objects of a univalent category, and equality in C,

equivalent to adjoint equivalence.



Summary

For every signature ¢, we have

a notion of indiscernibility within each sort,
a notion of univalent structures,

a notion of equivalence,

a univalence theorem,

and thus a (higher) structure identity principle.



Summary

For every signature ¢, we have

® a notion of indiscernibility within each sort,

® a notion of univalent structures,

® a notion of equivalence,

® 3 univalence theorem,

¢ and thus a (higher) structure identity principle.
The paper includes examples of

® f-categories,

® presheaves,

® profunctors,

® semi-displayed categories,

® bicategories,



Further work

® Drop the splitness condition for certain structures

Extend to infinite structures

Formulate an analogue to the Rezk completion

Translate the theory into one about structures which can include
functions

Explore examples



Thank you!
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