The Univalence Principle

Paige Randall North
University of Pennsylvania

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis
arXiv:2102.06275
27 April 2021

Outline

(1) What is / why (homotopy) type theory?

(2) What is / why univalence?

3 Univalent categories
(4) Univalent categories II

Why type theory?

- Homotopy type theory is the logic of homotopy theory
- Equality in the type theory corresponds to homotopy
- We don't have recourse to 'classical' equality
- We are forced to do everything up to homotopy (unless we can figure out a way to do it fibrewise)
- Proofs are computer-checkable.

What is type theory?

- Type theory is a language for mathematics, akin to category theory.
- Sentences are of the following form:
- $a_{1}: A_{1}, \ldots, a_{n}: A_{n} \vdash B\left(a_{1}, \ldots, a_{n}\right)$ type
- $a_{1}: A_{1}, \ldots, a_{n}: A_{n} \vdash b\left(a_{1}, \ldots, a_{n}\right): B\left(a_{1}, \ldots, a_{n}\right)$
- We conflate mathematical objects and mathematical statements.
- $n: \mathbb{N} \vdash$ isEven (n) type
- $n: \mathbb{N} \vdash e(n)$: isEven($2 n$)
- $X: U \vdash$ isContr (X) type
- $X: U \vdash c(X)$: isContr(CX) type

Interpretations of type theory

- Examples:
- $n: \mathbb{N} \vdash$ isEven (n) type
- $n: \mathbb{N} \vdash e(n)$: isEven $(2 n)$
- $X: U \vdash$ isContr (X) type
- $X: U \vdash c(X)$: isContr($C X)$ type
- $n: \mathbb{N} \vdash \operatorname{Vect}_{n}(\mathbb{N})$ type
- $n: \mathbb{N} \vdash o(n): \operatorname{Vect}_{n}(\mathbb{N})$ type
- There are many interpretations of dependent type theory:

Logical	Contexts	Types	Terms
Set theoretic	indices	indexed sets	proofs
sections			
Homotopical	base space	total space	sections

Type formers

- We can define the natural numbers, booleans, the circle, (dependent) functions, (dependent) products and coproducts as initial objects in the following way.

Natural numbers

$$
\begin{gathered}
\frac{\vdash \mathbb{N} \text { type } \quad \frac{\vdash x: \mathbb{N}}{\vdash \mathrm{o}: \mathbb{N}} \quad \frac{\vdash s x: \mathbb{N}}{\vdash}}{x: \mathbb{N} \vdash D(x) \text { type } \quad \vdash z: D(\mathrm{o}) \quad x: \mathbb{N}, y: D(x) \vdash \sigma(y): D(s x)} \\
x: \mathbb{N} \vdash d(x): D(x) \\
\vdash d(\mathrm{o}) \equiv z: D(\mathrm{o}) \quad x: \mathbb{N} \vdash \sigma(d(x)) \equiv d(s x): D(s x)
\end{gathered}
$$

The identity type

Identity type

$$
\frac{\vdash A \text { type } \quad \vdash a, b: A}{\vdash a={ }_{A} b} \quad \frac{\vdash A \text { type } \quad \vdash a: A}{\vdash r_{a}: a={ }_{A} a}
$$

$\vdash A$ type $\quad x, y: A, p: x={ }_{A} y \vdash D(p)$ type $\quad x: A \vdash \rho(x): D\left(r_{x}\right)$

$$
\begin{aligned}
x, y: A, p: x & ={ }_{A} y \vdash d(p): D(p) \\
x & : A \vdash \rho(x) \equiv d\left(r_{x}\right): D\left(r_{x}\right)
\end{aligned}
$$

- For a homotopy theorist, there are two important things in homotopy theory: $=($ homotopy $)$ and \vdash (fibration).

Outline

(1) What is / why (homotopy) type theory?

(2) What is / why univalence?

3 Univalent categories
(4) Univalent categories II

The univalence axiom

- We can prove for any $x: B \vdash E(x)$ type and any $b={ }_{B} c$, that $E(b)={ }_{U} E(c)$.
- (A type $x: B \vdash E(x)$ type is equivalently a function $E: B \rightarrow U$.)
- What is an equality $E(b)={ }_{U} E(c)$?
- We can separately define a type of equivalences $E \simeq F$ to consist of terms (f, g, h, i) where $f: E \leftrightarrows F: g, h(x): f g x={ }_{F} x, i(y): y={ }_{E} g f y$ for all $x: F, y: E .{ }^{1}$

The univalence axiom (Voevodsky)

For any two types E, F, the canonical function

$$
E={ }_{U} F \rightarrow E \simeq F
$$

is an equivalence.

[^0]
Univalence in general

Synthetic vs. analytic equalities

In type theory, we always have a (synthetic) equality type between
$a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b .
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow\left(a \cong_{T} b\right)
$$

is an equivalence.

Univalence in general

Synthetic vs. analytic equalities

In type theory, we always have a (synthetic) equality type between $a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow\left(a \cong_{T} b\right)
$$

is an equivalence.
The univalence axiom is a univalence principle where $T=U$ and \cong_{T} is set to \simeq, equivalence between types.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftrightarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.
- Given a 'univalence principle' $\left(a=_{T} b\right) \simeq(a \cong b)$, we would find a structure identity principle (in the sense of Aczel):

$$
(a \cong b) \rightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Goal

Our goal

To define a large class of (higher) structures and a notion of equivalence between them validating a univalence principle. This then automatically validates a structure identity principle.

Using ideas from:

- First Order Logic with Dependent Sorts, Makkai, 1995.
- Univalent categories and the Rezk completion, Ahrens, Kapulkin, Shulman, 2015.

Outline

(1) What is / why (homotopy) type theory?
(2) What is / why univalence?
(3) Univalent categories
(4) Univalent categories II

h-levels

We can stratify (some) types into h-levels.
$\mathrm{o}: T$ is contractible if

$$
\text { isContr}(T):=\Sigma_{c: T} \Pi_{y: T} c={ }_{T} y
$$

1: T is a proposition if

$$
\text { isProp }(T):=\Pi_{x, y: T} \text { isContr }\left(x=_{T} y\right)
$$

2: T is a set if

$$
\operatorname{isSet}(T):=\Pi_{x, y: T} \text { isProp }\left(x=_{T} y\right)
$$

3: T is a groupoid if

$$
\operatorname{isGpd}(T):=\Pi_{x, y: T} \operatorname{isSet}\left(x=_{T} y\right)
$$

$n+1: T$ is of h-level $n+1$ if ishlevel $(n+1)(T):=\Pi_{x, y: T}$ ishlevel $(n)\left(x==_{T} y\right)$

Categories

Definition (Ahrens, Kapulkin, Shulman 2015)

A category \mathscr{C} consists of

- ob $\mathscr{C}: U$
- $x, y: \operatorname{ob} \mathscr{C} \vdash \operatorname{hom}(x, y):$ Set
- $x: \operatorname{ob} \mathscr{C} \vdash 1_{x}: \operatorname{hom}(x, x)$
- $x, y, z:$ ob $\mathscr{C}, f: \operatorname{hom}(x, y), g: \operatorname{hom}(y, z) \vdash g \circ f: \operatorname{hom}(x, z)$
- $x, y: \operatorname{ob} \mathscr{C}, f: \operatorname{hom}(x, y) \vdash \mathrm{rUni}(f): 1_{y} \circ f={ }_{\operatorname{hom}(x, y)} f$
- $x, y: \operatorname{ob} \mathscr{C}, f: \operatorname{hom}(x, y) \vdash \operatorname{IUni}(f): f \circ 1_{x}=\operatorname{hom(x,y)} f$
- $w, x, y, z: \operatorname{ob} \mathscr{C}, f: \operatorname{hom}(w, x), g: \operatorname{hom}(x, y), h: \operatorname{hom}(y, z) \vdash$ $\operatorname{ass}(f, g, h):(h \circ g) \circ f=_{h o m(w, z)} h \circ(g \circ f)$

Univalent categories

Definition (Ahrens, Kapulkin, Shulman 2015)
A category \mathscr{C} is a univalent category if for all $x, y: o b \mathscr{C}$, the canonical function

$$
\left(x=_{\text {ob } \mathscr{C}} y\right) \rightarrow(x \cong y)
$$

is an equivalence.
Theorem (Ahrens, Kapulkin, Shulman 2015)
Given two univalent categories \mathscr{C} and \mathscr{D}, the canonical function

$$
(C=\text { uCat } D) \rightarrow(C \simeq D)
$$

is an equivalence.

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics: "The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense."

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics: "The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense."

Example

There are statements that can be made in set theory that distinguish the following two categories, but there are none in type theory (when interpreting them as univalent categories):

More precise goal

Our more precise goal

To define a large class of univalent (higher) structures and a notion of equivalence between them validating a univalence principle. This then automatically validates a structure identity principle.

Using ideas from:

- First Order Logic with Dependent Sorts, Makkai, 1995.
- Univalent categories and the Rezk completion, Ahrens, Kapulkin, Shulman, 2015.

Outline

(1) What is / why (homotopy) type theory?

(2) What is / why univalence?

(3) Univalent categories
(4) Univalent categories II

$\mathscr{L}_{\text {cat }}$-structures

Instead of thinking of $1_{\bullet}, \circ$ as functions, we can think of them as relations I, T. We can define a category \mathscr{C} to be:

- $O: U$
- $x, y: O \vdash A(x, y): U$
- $x: O, f: A(x, x) \vdash I_{x}(f): U$
- $x, y, z: O, f: A(x, y), g: A(y, z), h: A(x, z) \vdash$ $T_{x, y, z}(f, g, h): U$

$\mathscr{L}_{\text {cat }}$-structures

Instead of thinking of $1_{\bullet}, \circ$ as functions, we can think of them as relations I, T. We can define a category \mathscr{C} to be:

- $O: U$
- $x, y: O \vdash A(x, y): U$
- $x: O, f: A(x, x) \vdash I_{x}(f): U$
- $x, y, z: O, f: A(x, y), g: A(y, z), h: A(x, z) \vdash$ $T_{x, y, z}(f, g, h): U$

We want to add axioms such as

$$
\begin{aligned}
\forall(x, y, z: O) \cdot \forall & (f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
& T_{x, y, z}(f, g, h) \rightarrow T_{x, y, z}\left(f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{aligned}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

Instead of thinking of $1_{\bullet}, \circ$ as functions, we can think of them as relations I, T. We can define a category \mathscr{C} to be:

- $O: U$
- $x, y: O \vdash A(x, y): U$
- $x: O, f: A(x, x) \vdash I_{x}(f): U$
- $x, y, z: O, f: A(x, y), g: A(y, z), h: A(x, z) \vdash$
$T_{x, y, z}(f, g, h): U$

- $x, y: O, f, g: A(x, y) \vdash E_{x, y}(f, g): U$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T_{x y, z}(f, g, h) \rightarrow T_{x y, z}\left(f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

Instead of thinking of $1_{\bullet}, \circ$ as functions, we can think of them as relations I, T. We can define a category \mathscr{C} to be:

- $O: U$
- $x, y: O \vdash A(x, y): U$
- $x: O, f: A(x, x) \vdash I_{x}(f): U$
- $x, y, z: O, f: A(x, y), g: A(y, z), h: A(x, z) \vdash$ $T_{x, y, z}(f, g, h): U$

- $x, y: O, f, g: A(x, y) \vdash E_{x, y}(f, g): U$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T_{x y, z}(f, g, h) \rightarrow T_{x y, z}\left(f, g, h^{\prime}\right) \rightarrow E\left(h, h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Signatures

Inverse category

An inverse category is a strict category \mathscr{I} and a function $\rho: \mathscr{I} \rightarrow$ Nat $^{\text {op }}$ whose fibers are discrete.

The height of an inverse category (\mathscr{I}, ρ) is the maximum value of ρ.

Signatures

Signatures are inverse categories of finite height.

$\mathscr{L}_{\text {Magma }}$

$\mathscr{L}_{\text {Proset }}$

$\mathscr{L}_{\text {Group }}$

Structures

An \mathscr{L}-structure for a signature \mathscr{L} is a 'Reedy fibrant diagram' $\mathscr{L} \rightarrow U$.

Indiscernibility

Definition

Given an \mathscr{L}-structure $M: \mathscr{L} \rightarrow U$, and an object S of \mathscr{L}, we say that two elements $x, y: M S$ are indiscernible if substituting x for y in any type that depends on (i.e. object with a morphism to) S produces equivalent types.

Definition

An \mathscr{L}-structure $M: \mathscr{L} \rightarrow U$ is univalent if for any $x, y: M S$, the type of indiscernibilities between x and y is equivalent to the type of equalities between x and y.

Example

Let $\mathscr{L}_{\text {cat }}$ be the signature for categories, and \mathscr{C} a univalent $\mathscr{L}_{\text {cat }}$ structure.

- Any two terms $x: O, f: A(x, x) \vdash i, j: I_{x}(f)$ are indiscernible because there are no objects with a morphism to I. So each $I_{x}(f)$ is a proposition.
- Similarly, any two terms in $T_{x, y, z}(f, g, h)$ or $E_{x, y}(f, g)$ are indiscernible. So each $T_{x, y, z}(f, g, h), E_{x, y}(f, g)$ is a proposition.

- Two 'morphisms' $x, y: \mathrm{ob} \mathscr{C} \vdash f, g: A(x, y)$ are indiscernible if (among other things) $E_{x, y}(\alpha, f) \cong E_{x, y}(\alpha, g)$ for all $\alpha: A(x, y)$. The axioms for E say (1) this implies $E_{x, y}(f, g)$, and (2) that $E_{x, y}(f, g)$ implies f and g are indiscernible (E is a congruence for E, T, I). Thus, $f=g$ is equivalent to $E_{x, y}(f, g)$.

Univalence at O

- The indiscernibilities between $a, b: \mathscr{C} O$ consist of

1. $\phi_{x}: \mathscr{C} A(x, a) \simeq \mathscr{C} A(x, b)$ for each $x: \mathscr{C} O$
2. $\phi_{\bullet z}: \mathscr{C} A(a, z) \simeq \mathscr{C} A(b, z)$ for each $z: \mathscr{C} O$
3. $\phi_{. .}: \mathscr{C} A(a, a) \simeq \mathscr{C} A(b, b)$
4. The following for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
& T_{x, y, a}(f, g, h) \leftrightarrow T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{x, a, z}(f, g, h) \leftrightarrow T_{x, b, z}\left(\phi_{x \bullet}(f), \phi_{\bullet z}(g), h\right) \\
& T_{a, z, w}(f, g, h) \leftrightarrow T_{b, z, w}\left(\phi_{\bullet z}(f), g, \phi_{\bullet}(h)\right) \\
& T_{x, a, a}(f, g, h) \leftrightarrow T_{x, b, b}\left(\phi_{x} \bullet(f), \phi_{\bullet \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{a, x, a}(f, g, h) \leftrightarrow T_{b, x, b}\left(\phi_{\bullet}(f), \phi_{x \bullet}(g), \phi_{\bullet \bullet}(h)\right) \\
& T_{a, a, x}(f, g, h) \leftrightarrow T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet x}(g), \phi_{\bullet x}(h)\right) \\
& T_{a, a, a}(f, g, h) \leftrightarrow T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

Univalent $\mathscr{L}_{\text {cat }}$-structures continued

Proposition

The type of indiscernibilities between $a, b: O$ is equivalent to $a \cong b$.

Proof.

The isomorphisms $\phi_{x}: A(x, a) \cong A(x, b)$ are natural by

$$
T_{x, y, a}(f, g, h) \leftrightarrow T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right)
$$

(saying $\phi_{y \bullet}(g) \circ f=\phi_{x}(g \circ f)$). The rest of the data is redundent.
Thus, in a univalent $\mathscr{L}_{\text {cat }}$-structure, $(a=b) \simeq(a \cong b)$.

Theorem

Univalent $\mathscr{L}_{\text {cat }}$-structures are equivalent to the univalent categories of Ahrens-Kapulkin-Shulman.

Categorical equivalences

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of $\mathscr{L}_{\text {cat }+\mathrm{E}}$-Structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- FT: $\mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D I}(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-Structures consists of surjections

- FO: $\mathscr{C} O \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- FT: $\mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D I}(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-Structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \longleftrightarrow \mathscr{D} T(F f, F g, F h)$ for all
$f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \longleftrightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- FI : $\mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-Structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \longleftrightarrow \mathscr{D} T(F f, F g, F h)$ for all
$f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- $F O: \mathscr{C O} \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \cong \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \longleftrightarrow \mathscr{D} T(F f, F g, F h)$ for all
$f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Equivalences in general

Definition (equivalence)

An equivalence $M \simeq N$ between two \mathscr{L}-structures is a very split-surjective morphism $M \rightarrow N$.

Theorem

Given two univalent \mathscr{L}-structures M and N,

$$
(M=N) \simeq(M \simeq N) .
$$

Theorem

For a signature $L: \operatorname{Sig}(n)$, the type of univalent L-structures is of h-level $n+1$.

Opetopic bicategories

The signature is the following plus a unary predicate $U_{n, 1}$ and a binary predicate $E_{n, 1}$ on each $C_{n, 1}$.

Univalence makes each $T_{\text {... }}$ a proposition, each $C_{n, 1}$ a set with equality given by $E_{n, 1}, C_{1}$ the objects of a univalent category, and equality in C_{o} equivalent to adjoint equivalence.

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

The paper includes examples of

- t-categories,
- presheaves,
- profunctors,
- semi-displayed categories,
- bicategories,
- ...

Further work

- Drop the splitness condition for certain structures
- Extend to infinite structures
- Formulate an analogue to the Rezk completion
- Translate the theory into one about structures which can include functions
- Explore examples

Thank you!

[^0]: ${ }^{1}$ This is a lie: we actually want an adjoint equivalence.

