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Why type theory?

• Homotopy type theory is the logic of homotopy theory
• Equality in the type theory corresponds to homotopy

• We don’t have recourse to ‘classical’ equality
• We are forced to do everything up to homotopy (unless we can

figure out a way to do it fibrewise)

• Proofs are computer-checkable.
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What is type theory?

• Type theory is a language for mathematics, akin to category
theory.

• Sentences are of the following form:
• a1 : A1, ...,an : An ` B(a1, ...,an) type
• a1 : A1, ...,an : An ` b(a1, ...,an) : B(a1, ...,an)

• We conflate mathematical objects and mathematical statements.
• n : N ` isEven(n) type
• n : N ` e(n) : isEven(2n)
• X : U ` isContr(X) type
• X : U ` c(X) : isContr(CX) type
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Interpretations of type theory

• Examples:
• n : N ` isEven(n) type
• n : N ` e(n) : isEven(2n)
• X : U ` isContr(X) type
• X : U ` c(X) : isContr(CX) type
• n : N ` Vectn(N) type
• n : N ` 0(n) : Vectn(N) type

• There are many interpretations of dependent type theory:

Contexts Types Terms
Logical hypotheses predicates proofs
Set theoretic indices indexed sets sections
Homotopical base space total space sections
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Type formers

• We can define the natural numbers, booleans, the circle,
(dependent) functions, (dependent) products and coproducts as
initial objects in the following way.

Natural numbers

` N type ` 0 : N

` x : N

` sx : N

x : N ` D(x) type ` z : D(0) x : N,y : D(x) ` σ(y) : D(sx)

x : N ` d(x) : D(x)
` d(0)≡ z : D(0) x : N ` σ(d(x))≡ d(sx) : D(sx)
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The identity type
Identity type

` A type ` a,b : A

` a=A b

` A type ` a : A

` ra : a=A a

` A type x,y : A, p : x =A y ` D(p) type x : A ` ρ(x) : D(rx)

x,y : A, p : x =A y ` d(p) : D(p)
x : A ` ρ(x)≡ d(rx) : D(rx)

• For a homotopy theorist, there are two important things in
homotopy theory: = (homotopy) and ` (fibration).
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The univalence axiom

• We can prove for any x : B ` E(x) type and any b=B c, that
E(b) =U E(c).

• (A type x : B ` E(x) type is equivalently a function E : B→ U.)
• What is an equality E(b) =U E(c)?
• We can separately define a type of equivalences E ' F to consist of
terms (f ,g,h, i) where f : E� F : g, h(x) : fgx =F x, i(y) : y =E gfy
for all x : F,y : E.1

The univalence axiom (Voevodsky)
For any two types E,F, the canonical function

E =U F→ E ' F

is an equivalence.

1This is a lie: we actually want an adjoint equivalence.
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Univalence in general

Synthetic vs. analytic equalities
In type theory, we always have a (synthetic) equality type between
a,b : T

a=T b.

Depending on the type T, we might have a type of “analytic equalities”

a∼= b.

A “univalence principle” for this T and this ∼= states that

(a=T b)→ (a∼=T b)

is an equivalence.

The univalence axiom is a univalence principle where T = U and ∼=T is
set to ', equivalence between types.
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Identicals and indiscernibilites

Identity of indiscernibles
Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a= b)←
�

∀P.P(a)↔ P(b)
�

• This holds in MLTT.
• Given a ‘univalence principle’ (a=T b)' (a∼= b), we would find a

structure identity principle (in the sense of Aczel):

(a∼= b)→

�

∏

P:T→U
P(a)' P(b)

�

.
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Goal

Our goal
To define a large class of (higher) structures and a notion of equivalence
between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using ideas from:
• First Order Logic with Dependent Sorts, Makkai, 1995.
• Univalent categories and the Rezk completion, Ahrens, Kapulkin,
Shulman, 2015.
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h-levels
We can stratify (some) types into h-levels.
0: T is contractible if

isContr(T) := Σc:TΠy:T c=T y

1: T is a proposition if

isProp(T) := Πx,y:T isContr(x =T y)

2: T is a set if
isSet(T) := Πx,y:T isProp(x =T y)

3: T is a groupoid if

isGpd(T) := Πx,y:T isSet(x =T y)

n+ 1: T is of h-level n+ 1 if

ishlevel(n+ 1)(T) := Πx,y:T ishlevel(n)(x =T y)
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Categories

Definition (Ahrens, Kapulkin, Shulman 2015)
A category C consists of
• obC : U
• x,y : obC ` hom(x,y) : Set
• x : obC ` 1x : hom(x,x)
• x,y, z : obC , f : hom(x,y),g : hom(y, z) ` g ◦ f : hom(x, z)
• x,y : obC , f : hom(x,y) ` rUni(f) : 1y ◦ f =hom(x,y) f
• x,y : obC , f : hom(x,y) ` lUni(f) : f ◦ 1x =hom(x,y) f
• w,x,y, z : obC , f : hom(w,x),g : hom(x,y),h : hom(y, z) `

ass(f ,g,h) : (h ◦ g) ◦ f =hom(w,z) h ◦ (g ◦ f)
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Univalent categories

Definition (Ahrens, Kapulkin, Shulman 2015)
A category C is a univalent category if for all x,y : obC , the canonical
function

(x =obC y)→ (x ∼= y)

is an equivalence.

Theorem (Ahrens, Kapulkin, Shulman 2015)
Given two univalent categories C and D, the canonical function

(C =UCat D)→ (C ' D)

is an equivalence.
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A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Example
There are statements that can be made in set theory that distinguish
the following two categories, but there are none in type theory (when
interpreting them as univalent categories):

•
##

cc • ' •
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More precise goal

Our more precise goal
To define a large class of univalent (higher) structures and a notion of
equivalence between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using ideas from:
• First Order Logic with Dependent Sorts, Makkai, 1995.
• Univalent categories and the Rezk completion, Ahrens, Kapulkin,
Shulman, 2015.
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Lcat-structures
Instead of thinking of 1•,◦ as functions, we can
think of them as relations I,T. We can define a
category C to be:
• O : U
• x,y : O ` A(x,y) : U
• x : O, f : A(x,x) ` Ix(f) : U
• x,y, z : O, f : A(x,y),g : A(y, z),h : A(x, z) `

Tx,y,z(f ,g,h) : U

• x,y : O, f ,g : A(x,y) ` Ex,y(f ,g) : U

T I

A

O

We want to add axioms such as

∀(x,y, z : O).∀(f : A(x,y)).∀(g : A(y, z)).∀(h,h′ : A(x, z)).
Tx,y,z(f ,g,h)→ Tx,y,z(f ,g,h′)→ (h= h′)

(composites are unique), so we add an equality ‘predicate’.
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Signatures
Inverse category
An inverse category is a strict category I and a function ρ : I → Natop

whose fibers are discrete.
The height of an inverse category (I ,ρ) is the maximum value of ρ.

Signatures
Signatures are inverse categories of finite height.

M A I E M

O O O
LMagma LProset LGroup

Structures
An L -structure for a signature L is a ‘Reedy fibrant diagram’ L → U.
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Indiscernibility

Definition
Given an L -structure M :L → U, and an object S of L , we say that
two elements x,y : MS are indiscernible if substituting x for y in any
type that depends on (i.e. object with a morphism to) S produces
equivalent types.

Definition
An L -structure M :L → U is univalent if for any x,y : MS, the type of
indiscernibilities between x and y is equivalent to the type of equalities
between x and y.
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Example

Let Lcat be the signature for categories, and C a univalent Lcat
structure.
• Any two terms x : O, f : A(x,x) ` i, j : Ix(f) are
indiscernible because there are no objects
with a morphism to I. So each Ix(f) is a
proposition.

• Similarly, any two terms in Tx,y,z(f ,g,h) or
Ex,y(f ,g) are indiscernible. So each
Tx,y,z(f ,g,h), Ex,y(f ,g) is a proposition.

T I E

A

O

• Two ‘morphisms’ x,y : obC ` f ,g : A(x,y) are indiscernible if
(among other things) Ex,y(α, f)∼= Ex,y(α,g) for all α : A(x,y). The
axioms for E say (1) this implies Ex,y(f ,g), and (2) that Ex,y(f ,g)
implies f and g are indiscernible (E is a congruence for E,T, I).
Thus, f = g is equivalent to Ex,y(f ,g).
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Univalence at O

• The indiscernibilities between a,b :CO consist of
1. φx• :CA(x,a)'CA(x,b) for each x :CO
2. φ•z :CA(a, z)'CA(b, z) for each z :CO
3. φ•• :CA(a,a)'CA(b,b)
4. The following for all appropriate w,x,y, z, f ,g,h:

Tx,y,a(f ,g,h)↔ Tx,y,b(f ,φy•(g),φx•(h)) Ia(f)↔ Ib(φ••(f))

Tx,a,z(f ,g,h)↔ Tx,b,z(φx•(f),φ•z(g),h) Ex,a(f ,g)↔ Ex,b(φx•(f),φx•(g))

Ta,z,w(f ,g,h)↔ Tb,z,w(φ•z(f),g,φ•w(h)) Ea,x(f ,g)↔ Eb,x(φ•x(f),φ•x(g))

Tx,a,a(f ,g,h)↔ Tx,b,b(φx•(f),φ••(g),φx•(h)) Ea,a(f ,g)↔ Eb,b(φ••(f),φ••(g))

Ta,x,a(f ,g,h)↔ Tb,x,b(φ•x(f),φx•(g),φ••(h))

Ta,a,x(f ,g,h)↔ Tb,b,x(φ••(f),φ•x(g),φ•x(h))

Ta,a,a(f ,g,h)↔ Tb,b,b(φ••(f),φ••(g),φ••(h))
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Univalent Lcat-structures continued

Proposition
The type of indiscernibilities between a,b : O is equivalent to a∼= b.

Proof.
The isomorphisms φx• : A(x,a)∼= A(x,b) are natural by

Tx,y,a(f ,g,h)↔ Tx,y,b(f ,φy•(g),φx•(h))

(saying φy•(g) ◦ f = φx•(g ◦ f)). The rest of the data is redundent.

Thus, in a univalent Lcat-structure, (a= b)' (a∼= b).

Theorem
Univalent Lcat-structures are equivalent to the univalent categories of
Ahrens-Kapulkin-Shulman.
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Categorical equivalences

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence F :C ' D of
Lcat+e-structures consists of surjections
• FO :CO� DO
• FA :CA(x,y)� DA(Fx,Fy) for every x,y :CO
• FT :C T(f ,g,h)� DT(Ff ,Fg,Fh) for all

f :CA(x,y),g :CA(y, z),h :CA(x, z)
• FE :C E(f ,g)� DE(Ff ,Fg) for all f ,g :CA(x,y)
• FI :C I(f)� DI(Ff) for all f :CA(x,x)
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Equivalences in general

Definition (equivalence)
An equivalence M ' N between two L -structures is a very
split-surjective morphism M→ N.

Theorem
Given two univalent L -structures M and N,

(M = N)' (M ' N).

Theorem
For a signature L : Sig(n), the type of univalent L-structures is of h-level
n+ 1.
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Opetopic bicategories

The signature is the following plus a unary predicate Un,1 and a binary
predicate En,1 on each Cn,1.

T0;1 T0,1;2 T1;1 T2;1 T1,2;2 . . .

C0,1 C1,1 C2,1 C3,1 . . .

C1

C0

Univalence makes each T... a proposition, each Cn,1 a set with equality
given by En,1, C1 the objects of a univalent category, and equality in C0
equivalent to adjoint equivalence.
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Summary

For every signature L , we have
• a notion of indiscernibility within each sort,
• a notion of univalent structures,
• a notion of equivalence,
• a univalence theorem,
• and thus a (higher) structure identity principle.

The paper includes examples of
• †-categories,
• presheaves,
• profunctors,
• semi-displayed categories,
• bicategories,
• ...
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Further work

• Drop the splitness condition for certain structures
• Extend to infinite structures
• Formulate an analogue to the Rezk completion
• Translate the theory into one about structures which can include
functions

• Explore examples



31/31

Thank you!
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