A higher structure identity principle

Paige Randall North

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis

paigenorth.github.io/hottest.pdf arXiv:2004.06572

17 June 2020

Outline

2 Lower structure identity principles in univalent foundations

3 First-order logic with dependent sorts for lower structures

4 FOLDS categories

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a (synthetic) equality type between a, b : T

 $a =_T b$.

Depending on the type *T*, we might have a type of "analytic equalities"

 $a \cong b$.

A "univalence principle" for this *T* and this \cong states that

$$(a =_T b) \to (a \cong b)$$

is an equivalence.

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a (synthetic) equality type between a, b : T

 $a =_T b$.

Depending on the type *T*, we might have a type of "analytic equalities"

 $a \cong b$.

A "univalence principle" for this *T* and this \cong states that

$$(a =_T b) \to (a \cong b)$$

is an equivalence.

The univalence axiom in type theory states that

$$S =_{\mathscr{U}} T \to S \simeq T$$

is an equivalence.

Identity of indiscernibles

$$(a = b) \leftarrow (\forall P.P(a) \leftrightarrow P(b))$$

Identity of indiscernibles

$$(a = b) \longleftrightarrow (\forall P.P(a) \longleftrightarrow P(b))$$

Identity of indiscernibles

$$(a =_T b) \longleftrightarrow \left(\prod_{P:T \to \mathcal{U}} P(a) \simeq P(b)\right)$$

Identity of indiscernibles

Leibniz: two things are equal when they are *indiscernible* (have the same properties).

$$(a =_T b) \longleftrightarrow \left(\prod_{P:T \to \mathscr{U}} P(a) \simeq P(b)\right)$$

• This holds in MLTT.

Identity of indiscernibles

$$(a =_T b) \longleftrightarrow \left(\prod_{P:T \to \mathscr{U}} P(a) \simeq P(b)\right)$$

- This holds in MLTT.
- Given a 'univalence principle' $(a =_T b) \simeq (a \cong b)$, we would find a *structure identity principle* (in the sense of Aczel):

$$(a \cong b) \to \left(\prod_{P:T \to \mathscr{U}} P(a) \simeq P(b)\right).$$

Goal

Our goal

To define a large class of (higher) *structures* and a notion of *equivalence* between them validating a univalence principle. This then automatically validates a structure identity principle.

Using ideas from:

- First Order Logic with Dependent Sorts, Makkai, 1995.
- *Univalent categories and the Rezk completion*, Ahrens, Kapulkin, Shulman, 2015.

Outline

2 Lower structure identity principles in univalent foundations

3 First-order logic with dependent sorts for lower structures

4 FOLDS categories

Propositions

Theorem (univalence for propositions)

Given two mere propositions P and Q,

$$(P =_{\mathsf{Prop}} Q) \simeq (P \leftrightarrow Q).$$

Corollary (structure identity principle for propositions) Given two mere propositions *P* and *Q*,

$$(P \leftrightarrow Q) \rightarrow \left(\prod_{S: \mathsf{Prop} \rightarrow \mathscr{U}} S(P) \simeq S(Q)\right).$$

Magmas

Magmas

A magma is a set M and a binary operation $M \times M \rightarrow M$.

There are two notions of 'sameness' for elements m, n of a magma:

- 1. Equality: $m =_M n$
- 2. Indiscernibility:

 $\prod_{x,y:M} (mx = nx) \times (xm = xn) \times ((xy = m) \leftrightarrow (xy = n))$

This produces two notions of equivalence of magmas:

- M ≃_e N if there are morphisms f : M ⊆ N : g respecting the operation such that gfm is equal to m for all m : M and likewise for fgn
- M ≃_i N if there are morphisms f : M ⊆ N : g respecting the operation such that *gfm* is *indiscernible* from m for all m : M and likewise for *fgn*

Preorders and topological spaces

Preorders

A *preorder* is a set *P* and a reflexive, transitive relation $\leq : P \times P \rightarrow \text{Prop.}$ Two elements *p*, *q* of a preorder *P* are *indiscernible* if

$$\prod_{x:P} (p \le x \leftrightarrow q \le x) \times (x \le p \leftrightarrow x \le q) \times (p \le p \leftrightarrow q \le q)$$

or, equivalently, if $p \le q \times q \le p$.

Topological spaces

A *topological space* is a set *T* and a collection $O : (T \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$ of subsets closed under union and finite intersection. Two elements *s*, *t* of a topological space *T* are *indiscernible* if $U(s) \leftrightarrow U(t)$ for every open set *U* of *T*.

Motivation

Equivalences between (higher) categorical structures are up to indiscernibility.

A lower structure identity principle in UF

Theorem (univalence for magmas with \cong_{e})

Given two magmas M, N,

$$(M =_{\mathsf{Mag}} N) \simeq (M \cong_e N).$$

- This is a special case of the general result for all 'standard' structures on sets (Thm 9.8.2 of the HoTT Book).
- The same holds for preorders with \cong_e and for topological spaces with \cong_e .

Another lower structure identity principle in UF?

Univalence with \cong_i

Q: Can we hope for the same with \cong_i ?

Another lower structure identity principle in UF?

Univalence with \cong_i

- Q: Can we hope for the same with \cong_i ?
- A: No: in particular, the projection $U : Mag \to Set$ would then take an equivalence $M \cong_i N$ to an equivalence $UM \cong_i UN$ between the underlying sets, making it an equivalence $M \cong_e N$.

For example, let **1** be the poset whose underlying set has one element, and let **2** be the poset whose underlying set has two elements *a* and *b* for which $a \le b$ and $b \le a$.

Another lower structure identity principle in UF?

Univalence with \cong_i

- Q: Can we hope for the same with \cong_i ?
- A: No: in particular, the projection $U : Mag \to Set$ would then take an equivalence $M \cong_i N$ to an equivalence $UM \cong_i UN$ between the underlying sets, making it an equivalence $M \cong_e N$.
- A: Yes: if we identify equality and indiscernibility.

For example, let **1** be the poset whose underlying set has one element, and let **2** be the poset whose underlying set has two elements *a* and *b* for which $a \le b$ and $b \le a$.

Outline

2 Lower structure identity principles in univalent foundations

3 First-order logic with dependent sorts for lower structures

4 FOLDS categories

First-order logic with dependent sorts

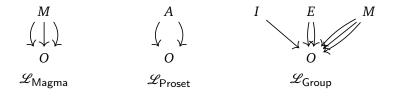
Inverse category

An *inverse category* is a strict category \mathscr{I} and a function $\rho : \mathscr{I} \to \mathsf{Nat}^{\mathsf{op}}$ whose fibers are discrete.

The *height* of an inverse category (\mathcal{I}, ρ) is the maximum value of ρ .

Signatures

Signatures are inverse categories of finite height.



Structures

An \mathcal{L} -structure is roughly a functor from \mathcal{L} into \mathcal{U} .

 $\mathscr{L}_{\mathsf{Proset}}$ -structures

An $\mathcal{L}_{\mathsf{Proset}}$ -structure *S* is

- 1. A type *SO*,
- 2. A type SA(x, y) for every x, y : O (meaning $x \le y$)

 $\begin{pmatrix} A \\ \begin{pmatrix} & \\ & \end{pmatrix} \\ O \end{pmatrix}$

Structures

An \mathcal{L} -structure is roughly a functor from \mathcal{L} into \mathcal{U} .

 $\mathscr{L}_{\mathsf{Proset}}$ -structures

An $\mathcal{L}_{\mathsf{Proset}}$ -structure S is

- 1. A type *SO*,
- 2. A type SA(x, y) for every x, y : O (meaning $x \le y$)

$\mathscr{L}_{\mathsf{Magma}}$ -structures

An \mathcal{L}_{Magma} -structure S is

1. A type *SO*,

2. A type *SM*(*x*,*y*,*z*) for every *x*,*y*,*z* : *O* (meaning *z* is the product of *x* and *y*)

We can impose axioms on these structures.

M

Indiscernibilities

Indiscernibilities between O-elements of $\mathscr{L}_{\mathsf{Proset}}\text{-}\mathsf{structures}$

An indiscernibility between two terms p, q: SO consists of

- $\prod_{x:SO} SA(p,x) \cong SA(q,x)$
- $\prod_{x:SO} SA(x,p) \cong SA(x,q)$
- $SA(p,p) \cong SA(q,q)$

Indiscernibilities

Indiscernibilities between O-elements of $\mathcal{L}_{\mathsf{Proset}}$ -structures

An indiscernibility between two terms p, q: SO consists of

- $\prod_{x:SO} SA(p,x) \cong SA(q,x)$
- $\prod_{x:SO} SA(x,p) \cong SA(x,q)$
- $SA(p,p) \cong SA(q,q)$

Indiscernibilities between *O*-elements of \mathscr{L}_{Magma} -structures An indiscernibility between two terms m, n: *SO* consists of

- $\prod_{x,y:SO} SM(m,x,y) \cong SM(n,x,y)$
- $\prod_{x,y:SO} SM(x,m,y) \cong SM(x,n,y)$
- $\prod_{x,y:SO} SM(x,y,m) \cong SM(x,y,n)$

- $\prod_{x:SO} SM(x,m,m) \cong SM(x,n,n)$
- $\prod_{x:SO} SM(m,x,m) \cong SM(n,x,n)$
- $\prod_{x:SO} SM(m,m,x) \cong SM(n,n,x)$
- $SM(m,m,m) \cong SM(n,n,n)$

Indiscernibilities at the top-level

Indiscernibilities between *A*-elements of \mathscr{L}_{Proset} -structures An indiscernibility between two terms a, b : SA(p,q) consists of

so all terms of a, b : SA(p,q) are (trivially) indiscernible.

Definition (univalent structure)

A structure *M* of a signature \mathcal{L} is *univalent* if the type of indiscernibilities between any two terms of any one sort is equivalent to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions, and all of the next-level sorts are sets.

Univalent structures

Proposition

A \mathscr{L}_{Proset} -structure *S* is univalent when each $p \leq q$ is a proposition and $(p = q) \rightarrow (p \leq q) \times (q \leq p)$ is an equivalence - in other words, when *A* is a poset.

Proposition

A \mathscr{L}_{Magma} -structure *S* is univalent when each SM(m, n, p) is a proposition and $(m = n) \rightarrow \prod_{x,y:M} (mx = nx) \times (xm = xn) \times ((xy = m) \leftrightarrow (xy = n))$ is an equivalence.

Proposition

A topological space *T* is univalent when $(x = y) \rightarrow \prod_{U \text{open in}T} (x \in U \leftrightarrow y \in U)$ is an equivalence – in other words, *T* is a *T*_o space.

Outline

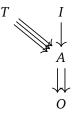
2 Lower structure identity principles in univalent foundations

3 First-order logic with dependent sorts for lower structures

4 FOLDS categories

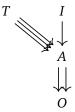
We can define the data of a category ${\mathscr C}$ to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$



We can define the data of a category ${\mathscr C}$ to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$

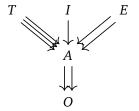


We want to add axioms such as

$$\forall (x, y, z : O). \forall (f : A(x, y)). \forall (g : A(y, z)). \forall (h, h' : A(x, z)).$$
$$T(x, y, z, f, g, h) \rightarrow T(x, y, z, f, g, h') \rightarrow (h = h')$$

We can define the data of a category ${\mathscr C}$ to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$



We want to add axioms such as

$$\forall (x, y, z : O). \forall (f : A(x, y)). \forall (g : A(y, z)). \forall (h, h' : A(x, z)).$$
$$T(x, y, z, f, g, h) \rightarrow T(x, y, z, f, g, h') \rightarrow (h = h')$$

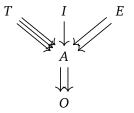
We can define the data of a category ${\mathscr C}$ to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$
- A family $\mathscr{C}E: \prod_{(x,y:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(x,y) \to \mathscr{U}$

We want to add axioms such as

$$\forall (x,y,z:O). \forall (f:A(x,y)). \forall (g:A(y,z)). \forall (h,h':A(x,z)).$$

$$T(x,y,z,f,g,h) \rightarrow T(x,y,z,f,g,h') \rightarrow (h=h')$$



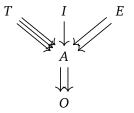
We can define the data of a category ${\mathscr C}$ to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$
- A family $\mathscr{C}E: \prod_{(x,y:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(x,y) \to \mathscr{U}$

We want to add axioms such as

$$\forall (x,y,z:O). \forall (f:A(x,y)). \forall (g:A(y,z)). \forall (h,h':A(x,z)).$$

$$T(x,y,z,f,g,h) \rightarrow T(x,y,z,f,g,h') \rightarrow E(h,h')$$



Univalent \mathscr{L}_{cat} -structures

- Every two elements of $\mathscr{C}I_x(f)$, $\mathscr{C}E_{x,y}(f,g)$, or $\mathscr{C}T_{x,y,z}(f,g,h)$ are indiscernible
 - so each of these types should be a proposition.
- The axioms making *E* a congruence for *T* and *I* make $\mathscr{C}E(f,g)$ the type of indisceribilities between $f,g: \mathscr{C}A(x,y)$
 - so we should have $(f = g) = \mathscr{C}E(f,g)$, making each $\mathscr{C}A(x,y)$ a set.
- The indiscernibilities between *a*, *b* : *CO* consist of
 - 1. $\phi_{x\bullet}$: $\mathscr{C}A(x,a) \simeq \mathscr{C}A(x,b)$ for each x : $\mathscr{C}O$
 - 2. $\phi_{\bullet z}$: $\mathscr{C}A(a, z) \simeq \mathscr{C}A(b, z)$ for each z: $\mathscr{C}O$
 - 3. $\phi_{\bullet\bullet}$: $\mathscr{C}A(a,a) \simeq \mathscr{C}A(b,b)$
 - 4. The following for all appropriate *w*,*x*,*y*,*z*,*f*,*g*,*h*:

$$\begin{split} T_{xy,a}(f,g,h) &\longleftrightarrow T_{xy,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h)) \\ T_{x,a,z}(f,g,h) &\longleftrightarrow T_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h) \\ T_{a,z,w}(f,g,h) &\longleftrightarrow T_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h)) \\ T_{x,a,a}(f,g,h) &\longleftrightarrow T_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet \bullet}(g),\phi_{x\bullet}(h)) \\ T_{a,x,a}(f,g,h) &\longleftrightarrow T_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet \bullet}(h)) \\ T_{a,a,x}(f,g,h) &\longleftrightarrow T_{b,b,x}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h)) \\ T_{a,a,a}(f,g,h) &\longleftrightarrow T_{b,b,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet \bullet}(g),\phi_{\bullet \bullet}(h)) \end{split}$$

$$I_{a,a}(f) \leftrightarrow I_{b,b}(\phi_{\bullet\bullet}(f))$$

$$E_{x,a}(f,g) \leftrightarrow E_{x,b}(\phi_{x\bullet}(f),\phi_{x\bullet}(g))$$

$$E_{a,x}(f,g) \leftrightarrow E_{b,x}(\phi_{\bullet x}(f),\phi_{\bullet x}(g))$$

$$E_{a,a}(f,g) \leftrightarrow E_{b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g))$$

Univalent \mathscr{L}_{cat} -structures continued

Proposition

The type of indiscernibilities between a, b : CO is equivalent to $a \cong b$.

(The isomorphisms $\phi_{x\bullet} : \mathscr{C}A(x, a) \cong \mathscr{C}A(x, b)$ are natural by $\mathscr{C}T_{x,y,a}(f,g,h) \leftrightarrow \mathscr{C}T_{x,y,b}(f, \phi_{y\bullet}(g), \phi_{x\bullet}(h))$ (saying $\phi_{y\bullet}(g) \circ f = \phi_{x\bullet}(g \circ f)$). The rest of the data is redundent.) Thus, in a univalent \mathscr{L}_{cat} -structure, $(a = b) \simeq a \cong b$.

Theorem

Univalent \mathcal{L}_{cat} -structures are equivalent to the univalent categories of Ahrens-Kapulkin-Shulman.

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015) Given univalent categories \mathscr{C}, \mathscr{D} ,

 $(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence $F : \mathcal{C} \simeq \mathcal{D}$ of \mathcal{L}_{cat+E} -structures consists of surjections

- FO: CO → DO
- $FA: \mathscr{C}A(x,y) \twoheadrightarrow \mathscr{D}A(Fx,Fy)$ for every $x,y:\mathscr{C}O$
- $FT : \mathscr{C}T(f,g,h) \twoheadrightarrow \mathscr{D}T(Ff,Fg,Fh)$ for all $f : \mathscr{C}A(x,y),g : \mathscr{C}A(y,z),h : \mathscr{C}A(x,z)$
- $FE: \mathscr{C}E(f,g) \twoheadrightarrow \mathscr{D}E(Ff,Fg)$ for all $f,g: \mathscr{C}A(x,y)$
- $FI: \mathscr{C}I(f) \twoheadrightarrow \mathscr{D}I(Ff)$ for all $f: \mathscr{C}A(x,x)$

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015) Given univalent categories \mathscr{C}, \mathscr{D} ,

 $(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence $F : \mathscr{C} \simeq \mathscr{D}$ of univalent \mathscr{L}_{cat+E} -structures consists of surjections

- FO: CO → DO
- $FA: \mathscr{C}A(x,y) \twoheadrightarrow \mathscr{D}A(Fx,Fy)$ for every $x,y:\mathscr{C}O$
- $FT : \mathscr{C}T(f,g,h) \twoheadrightarrow \mathscr{D}T(Ff,Fg,Fh)$ for all $f : \mathscr{C}A(x,y),g : \mathscr{C}A(y,z),h : \mathscr{C}A(x,z)$
- $FE: \mathscr{C}E(f,g) \twoheadrightarrow \mathscr{D}E(Ff,Fg)$ for all $f,g: \mathscr{C}A(x,y)$
- $FI: \mathscr{C}I(f) \twoheadrightarrow \mathscr{D}I(Ff)$ for all $f: \mathscr{C}A(x,x)$

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015) Given univalent categories \mathscr{C}, \mathscr{D} ,

 $(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence $F : \mathscr{C} \simeq \mathscr{D}$ of univalent \mathscr{L}_{cat+E} -structures consists of surjections

- FO: CO → DO
- $FA: \mathscr{C}A(x,y) \twoheadrightarrow \mathscr{D}A(Fx,Fy)$ for every $x,y:\mathscr{C}O$
- $FT : \mathscr{C}T(f,g,h) \leftrightarrow \mathscr{D}T(Ff,Fg,Fh)$ for all $f : \mathscr{C}A(x,y),g : \mathscr{C}A(y,z),h : \mathscr{C}A(x,z)$
- $FE: \mathscr{C}E(f,g) \hookrightarrow \mathscr{D}E(Ff,Fg)$ for all $f,g: \mathscr{C}A(x,y)$
- $FI: \mathscr{C}I(f) \leftrightarrow \mathscr{D}I(Ff)$ for all $f: \mathscr{C}A(x,x)$

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015) Given univalent categories \mathscr{C}, \mathscr{D} ,

 $(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence $F : \mathscr{C} \simeq \mathscr{D}$ of univalent \mathscr{L}_{cat+E} -structures consists of surjections

- FO: CO → DO
- $FA: \mathscr{C}A(x,y) \twoheadrightarrow \mathscr{D}A(Fx,Fy)$ for every $x, y: \mathscr{C}O$
- $FT : \mathscr{C}T(f,g,h) \leftrightarrow \mathscr{D}T(Ff,Fg,Fh)$ for all $f : \mathscr{C}A(x,y),g : \mathscr{C}A(y,z),h : \mathscr{C}A(x,z)$
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all f, g: CA(x, y)
- $FI: \mathscr{C}I(f) \leftrightarrow \mathscr{D}I(Ff)$ for all $f: \mathscr{C}A(x,x)$

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015) Given univalent categories \mathscr{C}, \mathscr{D} ,

 $(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence $F : \mathscr{C} \simeq \mathscr{D}$ of univalent \mathscr{L}_{cat+E} -structures consists of surjections

- FO: CO → DO
- $FA: \mathscr{C}A(x,y) \cong \mathscr{D}A(Fx,Fy)$ for every $x, y: \mathscr{C}O$
- $FT : \mathscr{C}T(f,g,h) \leftrightarrow \mathscr{D}T(Ff,Fg,Fh)$ for all $f : \mathscr{C}A(x,y),g : \mathscr{C}A(y,z),h : \mathscr{C}A(x,z)$
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all f, g: CA(x, y)
- $FI: \mathscr{C}I(f) \leftrightarrow \mathscr{D}I(Ff)$ for all $f: \mathscr{C}A(x,x)$

Equivalences in general

Definition (equivalence)

An *equivalence* $M \simeq N$ between two \mathcal{L} -structures is a very split-surjective morphism $M \rightarrow N$.

Theorem

Given two univalent \mathcal{L} -structures M and N,

 $(M=N)\simeq (M\simeq N).$

Theorem

For a signature L: Sig(n), the type of univalent L-structures is of h-level n + 1.

Example: magmas

Equivalences of univalent magmas

An equivalence of magmas N, P consists of surjections

• $FO: NO \rightarrow PO$

•
$$FM: NM(x, y, z) \rightarrow PM(Fx, Fy, Fz)$$

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

• $FO: NO \rightarrow PO$

•
$$FM: NM(x, y, z) \rightarrow PM(Fx, Fy, Fz)$$

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

• $FO: NO \rightarrow PO$

•
$$FM: NM(x, y, z) \leftrightarrow PM(Fx, Fy, Fz)$$

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

• $FO: NO \cong PO$

•
$$FM : NM(x, y, z) \leftrightarrow PM(Fx, Fy, Fz)$$

Summary

For every signature \mathcal{L} , we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

Summary

For every signature \mathcal{L} , we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

The paper includes examples of

- †-categories,
- presheaves,
- profunctors,
- semi-displayed categories,
- bicategories,

Further work

- Drop the splitness condition for certain structures
- Formulate an analogue to the Rezk completion

Thank you!