Coinductive control of inductive data types

Paige Randall North jww Maximilien Péroux & Lukas Mulder

based on:

Coinductive control of inductive data types, North & Péroux Measuring data types, Mulder, North & Péroux and work in progress

5 December 2024

Outline

Overview and background

Endofunctors

Work in progress: generalization

Outline

Overview and background

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

 $\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

$$\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an accessible, lax symmetric monoidal endofunctor on a locally presentable, symmetric monoidal closed category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

 $\mathsf{Endo}_{\mathsf{alsm}}(\mathcal{C}) \to \mathsf{EnrCat}.$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

More "initial algebras" (e.g. generalized W-types)

Previous work on coalgebraic enrichment

Univeral measuring coalgebra (Sweedler, Wraith 1968)

For k-algebras A and B, there is a k-coalgebra Alg(A, B)

- ▶ which underlies an enrichment of *k*-algebras in *k*-coalgebras
- whose set-like elements¹ are in bijection with Alg(A, B).

Taking B := k, one gets the dual Alg(A, k) of A.

¹those $c \in Alg(A, B)$ s.t. $\Delta c = c \otimes c$ and $\epsilon(c) = 1_A$

Previous work on coalgebraic enrichment

Analogues

- Fox 1976 (monoids)
- Batchelor 2000 (modules)
- Anel-Joyal 2013 (dg-algebras)
- Hyland-Lopez Franco-Vasilakopoulou 2017 (monoids)
- ▶ Vasilakopoulou 2019 (V-categories)
- Péroux 2022 (∞-algebras of an ∞-operad)
- McDermott-Rivas-Uustalu 2022 (monads)
- North-Péroux 2023 (algebras of endofunctors)
- Banerjee-Kour 2024 (stable anti-Yetter Drinfeld modules)
- Aravantinos-Sotiropoulos Vasilakopoulou (modules in double categories)

Motivation: inductive types

- In functional programming, most types are defined inductively.
- ► Categorically: initial alg of polynomial endofunctor (W-type)

Example: N

- ▶ N is the initial algebra of the endofunctor $X \mapsto X + 1$ (on Set)
- The terminal coalgebra is \mathbb{N}^{∞}
- ▶ This functor satisfies the hypotheses of our theorem.

Example: lists in a set A

- ▶ The set of lists in *A* is the initial algebra of $X \mapsto 1 + A \times X$.
- ▶ The terminal coalgebra is the set of *streams* in *A*.
- ▶ With a commutative monoid structure on *A*, this functor satisfies the hypotheses of our theorem.

Outline

Overview and background

Endofunctors

Work in progress: generalization

Measuring in general

Fix a locally presentable, symmetric monoidal closed category $\mathcal C$ and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi: C \to \mathcal{C}(A, B)$ satisfying:

ebra
$$(C,\chi)$$
 together with a morphism $\phi: C \to \underline{\mathcal{C}}(A,B)$ ying: $FC \xrightarrow{\mathcal{F}(\phi)} F(\underline{\mathcal{C}}(A,B)) \xrightarrow{\alpha} \underline{\mathcal{C}}(FA,FB)$ \downarrow^{β} $\underline{\mathcal{C}}(A,B) \xrightarrow{\alpha} \underline{\mathcal{C}}(FA,B)$

The universal measure Alg(A, B) is the terminal one.

Measuring in general

Fix a locally presentable, symmetric monoidal closed category $\mathcal C$ and an accessible, lax symmetric monoidal endofunctor F.

Definition: measure

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi: C \to \mathcal{C}(A, B)$ satisfying:

ebra
$$(C, \chi)$$
 together with a morphism $\phi: C \to \underline{\mathcal{C}}(A, B)$
ying: $FC \xrightarrow{F(\phi)} F(\underline{\mathcal{C}}(A, B)) \xrightarrow{\alpha} \underline{\mathcal{C}}(FA, FB)$

$$\downarrow^{\beta}$$

$$\underline{\mathcal{C}}(A, B) \xrightarrow{\alpha} \underline{\mathcal{C}}(FA, B)$$

The universal measure Alg(A, B) is the terminal one.

Theorem (N.-Péroux)

The universal measure Alg(A, B) always exists, and these are the hom-coalgebras of an enrichment of Alg_E in CoAlg_E.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all [c] = 0 and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $[\![c]\!] \ge 1$ and for all $a \in A$.

The *universal measure* Alg(A, B) is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all [c] = 0 and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $[\![c]\!] \ge 1$ and for all $a \in A$.

The *universal measure* Alg(A, B) is the terminal measure $A \rightarrow B$.

What is this?

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

► The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.

Set-like elements in general

Definition: set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

- ► The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.
- ▶ If we're considering (Set, \times , *), the underlying set of \mathbb{I} is *, so these are 'special' elements of the underlying set of Alg(A, B).

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=*

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \mathsf{Alg}(A,B)$ is an element $*\in \mathsf{Alg}(A,B)$ s.t. *-1=*

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism

Definition: measuring

•• $f_c(0_A) = 0_B$ for all $c \in C$;

...

• $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \geqslant 1$ and for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism

Definition: measuring

•• $f_*(0_A) = 0_B;$

...

• $f_*(a+1) = f_*(a) + 1$ for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism that is, an element of $\mathsf{Alg}(A,B)$.

Definition: measuring

• $f_*(0_A) = 0_B;$

• • • •

• $f_*(a+1) = f_*(a) + 1$ for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \mathsf{Alg}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that *-1=* so $\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$ is an element $*\in \underline{\mathsf{Alg}}(A,B)$ s.t. *-1=* so f_* is a total algebra homomorphism that is, an element of $\mathtt{Alg}(A,B)$.

Example

$$\frac{\mathsf{Alg}(\mathbb{N}, A) \cong *}{\underline{\mathsf{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}}$$

Example

$$\underline{\mathsf{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- ► f₀
- ▶ f₁
- . .
- f_∞

Definition: measuring

...

- $f_0(0) = 0_B$
- $f_0(a+1) = 0_B$ for all $a \in A$

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- ► f₁
- . .
- f_{∞}

Definition: measuring

. . .

- $f_0(0) = 0_B$
- $f_0(a+1) = 0_B$ for all $a \in A$

Example

$$\mathsf{Alg}(\mathbb{N}, \mathit{A}) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- ► *f*₁
- . .
- f_{∞}

Definition: measuring

. . .

- $f_1(0_A) = 0_B$
- $f_1(a+1) = f_0(a) + 1$ for all $a \in A$

Example

$$\mathsf{Alg}(\mathbb{N}, \mathit{A}) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- $f_1(0) = 0_A$; $f_1(n+1) = 1_A$
- $ightharpoonup f_{\infty}$

Definition: measuring

- $f_1(0_A) = 0_B$
- $f_1(a+1) = f_0(a) + 1$ for all $a \in A$

Example

$$\mathsf{Alg}(\mathbb{N}, \mathit{A}) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

- $f_0(n) = 0_A$
- $f_1(0) = 0_A$; $f_1(n+1) = 1_A$
- $ightharpoonup f_{\infty}$

Definition: measuring

- $f_{\infty}(0) = 0_B$
- $f_{\infty}(a+1) = f_{\infty}(a) + 1$

Example

$$\mathsf{Alg}(\mathbb{N}, \mathit{A}) \cong \mathbb{N}^{\infty}$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A$$
; $f_1(n+1) = 1_A$

 $f_{\infty}(n) = n_A$

Definition: measuring

. . .

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

Example

$$\mathsf{Alg}(\mathbb{N},A)\cong\mathbb{N}^\infty$$

So denote the elements of $Alg(\mathbb{N}, A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A$$
; $f_1(n+1) = 1_A$

. . .

•
$$f_{\infty}(n) = n_A$$

Definition

So we call elements of the underlying set of $\underline{\mathsf{Alg}}(A,B)$ *n-partial* algebra homomorphisms.

- Let \mathbb{D} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- ▶ Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n},A)\cong egin{cases} * & \mathsf{if}\ n_A=m_A\ \mathsf{for}\ \mathsf{all}\ m\geqslant n; \ \varnothing & \mathsf{otherwise}. \end{cases}$$

- Let \mathbb{n} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- ▶ Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n},A)\cong egin{cases} * & \mathsf{if}\ n_A=m_A\ \mathsf{for}\ \mathsf{all}\ m\geqslant n; \ \varnothing & \mathsf{otherwise}. \end{cases}$$

$$\underline{\mathsf{Alg}}(\mathsf{m},A) \cong \begin{cases} \mathbb{N}^{\infty} & \text{if } n_A = m_A \text{ for all } m \geqslant n; \\ \mathbb{n}^{\circ} & \text{otherwise.} \end{cases}$$

So there is at least always an n-partial homomorphism out of n (which is unique).

What can we do with this?

Generalize W-types, i.e., initial algebras.

Definition: C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A such that for all other algebras B there is a unique

$$C \to \underline{\mathsf{Alg}}(A, B).$$

Initial object

An initial object in a category $\mathcal C$ is an object A such that for all other algebras B there is a unique

$$* \to \mathcal{C}(A, B)$$
.

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the I-initial algebra
- $ightharpoonup \mathbb{N}$ is the \mathbb{N}^{∞} -initial algebra

Endofunctors

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the I-initial algebra
- $ightharpoonup \mathbb{N}$ is the \mathbb{N}^{∞} -initial algebra
- ▶ \mathbb{I} (or \mathbb{N}^{∞} -) initial means initial with respect to total algebra homomorphisms

Theorem

m is the mo-initial algebra

 n°-initial means initial with respect to partial algebra homomorphisms

Examples

On a locally presentable symmetric monoidal category C:

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- $(F \otimes G)$ The tensor of two instances (C closed)
- (F + G) The coproduct of an instance F and an 'F-module' G
 - (id^A) The exponential id^A at object A (C cartesian closed)
- (*W*-type) The polynomial endofunctor associated to a morphism $f: X \to Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1}: C \to \operatorname{Set} (\mathcal{C} := \operatorname{Set})$
 - (d.e.s.) A discrete equational system of Leinster (monoidal structure on $\mathcal C$ is cocartesian, $\mathcal C$ has binary products that preserve filtered colimits)

Outline

Overview and background

Endofunctors

Work in progress: generalization

Proof sketch of main theorem²

Convolution algebra

We get a functor

$$[-,-]: \mathsf{CoAlg^{op}} \times \mathsf{Alg} \to \mathsf{Alg}$$

 $(\mathcal{C},\chi), \ (\mathcal{A},\alpha) \mapsto (\underline{\mathcal{C}}(\mathcal{C},\mathcal{A}),?)$

where? is the composite

$$F\underline{C}(C, A) \to \underline{C}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{C}(C, A).$$

Then we use the adjoint functor theorem to get an enriched hom

$$\mathsf{Alg}(-,-): \mathsf{Alg}^\mathsf{op} \times \mathsf{Alg} \to \mathsf{CoAlg}.$$

 $^{^2\}mathcal{C}$ a locally presentable, symmetric monoidal closed category; F an accessible, lax symmetric monoidal endofunctor

Generalizations/analogues: more convolution algebras⁴

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

▶ For $F, G : \mathcal{C} \to \mathcal{D}$: (F, G)-dialgebras³ are enriched in (G, F)-dialgebras.

From

$$F\underline{C}(C,A) \to \underline{C}(FC,FA) \xrightarrow{\alpha^* \chi_*} \underline{C}(GC,GA) \to G\underline{C}(C,A).$$

³objects are pairs $(X \in \mathcal{C}, \delta : FX \to GX)$

⁴all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras⁴

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : \mathcal{C} \to \mathcal{D}$: (F, G)-dialgebras³ are enriched in (G, F)-dialgebras.
- ▶ For $F : \mathcal{C} \to \mathcal{E}$, $G : \mathcal{D} \to \mathcal{E}$: $F \downarrow G$ is enriched in $G \downarrow F$.

From

$$F\underline{C}(C,A) \to \underline{C}(FC,FA) \xrightarrow{\alpha^* \chi_*} \underline{C}(GC',GA') \to G\underline{C}(C',A').$$

³objects are pairs (X ∈ C, δ : FX → GX)

⁴all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogues: more convolution algebras⁴

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : C \to D$: (F, G)-dialgebras³ are enriched in (G, F)-dialgebras.
- ▶ For $F : \mathcal{C} \to \mathcal{E}$, $G : \mathcal{D} \to \mathcal{E}$: $F \downarrow G$ is enriched in $G \downarrow F$.

...

From

$$F\underline{C}(C,A) \to \underline{C}(FC,FA) \xrightarrow{\alpha^* \chi_*} \underline{C}(GC',GA') \to G\underline{C}(C',A').$$

³objects are pairs $(X \in \mathcal{C}, \delta : FX \to GX)$

⁴all categories locally presentable, symmetric monoidal closed; all functors accessible

Summary

We have

- that algebras are enriched in coalgebras (under certain hypotheses)
- an interpretation as notion of partial algebra homomorphism (especially in the case N)
- many examples
- a more refined notion of initial algebra
- a generalization ...

Thank you!