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Different notions of equality

Synthetic vs. analytic equalities
In type theory with the equality type, we always have a
(“synthetic”) equality type between a,b: D

a=pb.
Depending on the type D, we might also have a type of “analytic”
equalities

a>=p b.

A univalence principle for this D and this ~p states that
(a=pb) = (a~pb)

is an equivalence.



The univalence axiom

Voevodsky postulated a univalence principle for types.

The univalence axiom

The canonical function (A =1ype B) — (A ~ B) is an equivalence of
types, for any types A and B.



Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the
same properties).
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Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a=pb) < I Pla)~P@)

P:D—Type

® This holds in type theory.

¢ Given a univalence principle (a =p b) ~ (a ~p b), we find an
equivalence principle:

(a ~p b) = II P ~Pe

P:D—Type
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Univalent mathematics
e [f two types A, B are propositions,

(A =prop B) & (A~ B) ~ (A & B)

so everything respects bi-implication of propositions.
e If A, B are sets,

UA
(A =g B) B4~ B)~ (A= B)
so everything respects bijection of sets.
e For types A, B which are structured sets (groups, rings, etc),

UA
~(

(A =cwp B) A~B)~ (A= B)

so everything respects isomorphism of groups (or rings, etc).’
e For univalent categories A, B,

(A =vca B) 2 (A~ B) ~ (A~ B)

so everything respects equivalence of univalent categories.”

5Coquand-Danielsson 2013
6 Ahrens-Kapulkin-Shulman 2015




Univalent mathematics

® Voevodsky dreamt of ‘univalent mathematics’ in which

where D is any type of mathematical object (propositions, sets,
groups, categories, co-categories, etc) and ~p is the
appropriate notion of ‘sameness’ for that type of objects.

® This would give us an appropriate language in which to study
D.
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Takeaway for formalization

¢ Things get harder (more tedious) when formalizing.

® Equivalence principles are often the things we sweep under the
rug in informal mathematics.

¢ In UF: they’re a theorem.

e Formalization is appropriate for reasoning about large,
unwieldy (higher categorical) structures.

¢ [n UF: we have support.
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The univalence principle

We realize Voevosky’s dream for “finite” algebraic structures.

Uses two-level type theory (homotopy type theory -+ formal
meta level).

Partially formalized in Agda with the two-level flag?.

Meta-theorem (and unwieldy), so provides recipe for
formalization in UF-based systems.

9by Uskiiplii
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® An Lca-structure C consists of:

I E . CO : Type
\ l / z,y:COF CA(x,y) : Type
A

x:CO,f:CA(z,x) F CI,(f): Type
u z,y,z2:CO, f:CA(z,y),g : CA(y,2),h :
0] CA(z,2) b CTyy - (f, 9, h) : Type
Lcat z,y:CO, f,g:CA(z,y) = CE,4(f,9) : Type

T



Structures

® Morally, an £-structure for a signature £ is a Reedy fibrant
diagram £ — Type.

® In type theory, we define an L-structure fiberwise.

® An Lca-structure C consists of:

I
A x:CO, f:CA(z,z) F CI(f) : Type

i £,y.2:CO, f : CA(z,y),g : CA(y,2), h :
10) CA(z,2) F CTyy.(f,g,h) : Type

Lcat ® 2,y:CO, f,g:CA(x,y) - CE,,(f,g9) : Type

T E

CO : Type
z,y:COF CA(x,y) : Type

® Then we add axioms.
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Level-wise equivalence

Proposition
For two L-structures S, T,

(S=r-suT) = (5= st T)
where =, _s;, denotes levelwise equivalence.

A levelwise equivalence C =, st D consists of:
* ¢o:CO = DO
® 2,9y:COFey:CA(x,y) = Dleox, eoy)
® 2:CO,f:CA(z,x) e : CI,(f) = Dl.yz(eaf)
® x,y,2:CO, f:CA(z,y),g: CA(y,2),h: CA(z,2) F
CTm,y,Z(fa g,h) = DTeom,eoy,eoz<€Afa eag,eah)
© 2,y:CO, f,g:CA(x,y) - CEyy(f,9) = CEeomeoy(eaf,eag)

But this is not an equivalence of categories.
And is it appropriate to call C, D categories?



Indiscernibility

Definition

Given an L-structure M, and an object S of £, we say that two
elements z,y : M S are indiscernible if substituting « for y in any
object of £ that depends on (i.e. object with a morphism to) S
produces equivalent types.

Definition

An L-structure M is univalent if for any object S of £, and any
x,y : M S, the type of indiscernibilities between x and y is
equivalent to the type of equalities between z and y.
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Univalent L., structures

Let C be a univalent L¢,; structure.

® Any two terms

I )
/ x:CO, f:CA(x,x) 1,5 :CI(f) are
\ l / indiscernible.
A

— Each CI,(f) is a proposition.

u — Similarly, each CT, , -(f,g,h), CELy(f,9)
0] is a proposition.

T

® In the axioms for a category, we have that E behaves like
equality (is reflexive and a congruence for 7', I, E.)

— Univalence at A means that f = g is equivalent to CE, 4(f, g).
— CA(xz,y) is a set.



Univalent L., structures

® The indiscernibilities between a, b : CO consist of
® ¢re: CA(z,a) = CA(z,b) for each z : CO
® ¢, :CA(a,z) = CA(b, z) for each z : CO
® (ee : CA(a,a) 2 CA(D,D)
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Univalent L., structures

® The indiscernibilities between a, b : CO consist of
® ¢re: CA(z,a) = CA(z,b) for each z : CO
® ¢, :CA(a,z) = CA(b, z) for each z : CO
® (o : CA(a,a) 2 CA(b,b)
® The following for all appropriate w,x,y, z, f, g, h:
Toy.a(f, 9, h) < CTo oy o (f; dye(9), dze(h)) Cla(f) < CIo(¢ee(f))
Te,a,2(f59:h) > CTu b, (Pze(f), do=(9), h) CEz.a(f,9) < CEup(due(f); Pzelg.
w(fig,h) < CTb,z,w(¢oz(f):g7 ¢°w( )) CEa(f, ) < CEb o (ex(f), Pox(g
T a(f7 9, h) < CT (Do h)) CEaa(f,g) < CEbp(dee(f); Pee(g)
Taz.a(f,9,h) < CThz,6(¢ea(
To,a,2(f,9,h) < CTy b2 (dee(
( ) > CThop.b(dee (f

—~ o~ —~

Ta,a,a(fr 9,

¢ But this an isomorphism in the usual categorical sense.
— Univalence at O means that z = y is equivalent to x =2 y.

— cf. Complete Segal spaces



The right notion of equivalence

Main theorem
For two univalent L-structures S, T,
(S=r-suT)=(S=r-suT) = (5=} 5, T) = (S >T)

where =7. ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.



The right notion of equivalence

Main theorem
For two univalent L-structures S, T,
(S =G T) ~ (S =, Str T) ~ (S ngStr = (S — T)

where =7 _ ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.

Very surjective morphisms of L,i-structures

A wvery surjective morphism or equivalence F : C ~ D of
Lcat-structures consists of surjections

® FO:CO — DO

e FA:CA(x,y) » DA(Fx, Fy) for every z,y : CO

® FT:CT(f,g9,h) - DIT(Ff,Fg, Fh) for all
f:CA(x,y),9:CA(y,z),h: CA(x,2)

e FE:CE(f,9) » DE(Ff,Fg) for all f,g:CA(x,y)

® FI:CI(f) —» DI(Ff) for all f:CA(z,x)



The right notion of equivalence

Main theorem

For two univalent L-structures S, T,
(S=r-suT)=(S=r-suT) = (5=} 5, T) = (S >T)

where =7 _ ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.

Very surjective morphisms of L,i-structures

A wvery surjective morphism or equivalence F : C ~ D of univalent
Lcat-structures consists of surjections

® FO:CO — DO

e FA:CA(x,y) » DA(Fx, Fy) for every z,y : CO

® FT:CT(f,g9,h) - DIT(Ff,Fg, Fh) for all
f:CA(x,y),9:CA(y,z),h: CA(x,2)

e FE:CE(f,9) » DE(Ff,Fg) for all f,g:CA(x,y)

® FI:CI(f) —» DI(Ff) for all f:CA(z,x)



The right notion of equivalence

Main theorem

For two univalent L-structures S, T,
(S=r-suT)=(S=r-suT) = (5=} 5, T) = (S >T)

where =7 _ ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.

Very surjective morphisms of L,i-structures

A wvery surjective morphism or equivalence F : C ~ D of univalent
Lcat-structures consists of surjections

e FO:CO — DO

e FA:CA(x,y) » DA(Fx, Fy) for every z,y : CO

e FT:CT(f,g,h) <+ DI'(Ff,Fg,Fh) for all
f:CA(x,y),9:CA(y,z),h: CA(z,2)

e FE:CE(f,g9) +» DE(Ff,Fg) for all f,g:CA(z,y)

® FI:CI(f) <> DI(Ff) for all f:CA(z,x)



The right notion of equivalence

Main theorem

For two univalent L-structures S, T,
(S=r-suT)=(S=r-suT) = (5=} 5, T) = (S >T)

where =7 _ ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.

Very surjective morphisms of L,i-structures

A wvery surjective morphism or equivalence F : C ~ D of univalent
Lcat-structures consists of surjections

® FO:CO — DO

e FA:CA(x,y) » DA(Fx, Fy) for every z,y : CO

e FT :CT(f,g,h) <+ DT(Ff, Fg, Fh) for all
f:CA(x,y),9:CA(y,z),h: CA(z,2)

o FE:(f=g) < (Ff=Fg) forall f,g:CA(z,y)

® FI:CI(f) <> DI(Ff) for all f:CA(z,x)



The right notion of equivalence

Main theorem

For two univalent L-structures S, T,
(S=r-suT)=(S=r-suT) = (5=} 5, T) = (S >T)

where =7 _ ¢, denotes levelwise equivalence up to indiscernbility
and — denotes a very split surjective morphism.

Very surjective morphisms of L,i-structures

A wvery surjective morphism or equivalence F : C ~ D of univalent
Lcat-structures consists of surjections

® FO:CO — DO

e FA:CA(x,y) = DA(Fz, Fy) for every z,y : CO

e FT :CT(f,g,h) <+ DT(Ff, Fg, Fh) for all
f:CA(x,y),9:CA(y,z),h: CA(x,2)

® FE:(f=g) < (Ff=Fg) forall f,g:CA(z,y)

® FI:CI(f) <> DI(Ff) for all f:CA(z,x)



Summary

For every signature £, we have
® a notion of structure,
® a notion of indiscernibility within each sort,
® 3 notion of univalent structures,
® a notion of equivalence,

® 3 univalence theorem.



Summary

For every signature £, we have

® a notion of structure,

a notion of indiscernibility within each sort,

a notion of univalent structures,

a notion of equivalence,
® a univalence theorem.

The paper includes examples of
® j-categories,
¢ profunctors,

® bicategories,

opetopic bicategories,
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Categories and set-categories

T 1 E T 1 Ey
Ne L N L
A A Ep
I IPZ
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Lcat ‘CCat+E

® When we consider Lcayg-structures (with axioms), the notion
of equivalence becomes isomorphism.

» Different notions of equivalence are appropriate at different
times.
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Bicategories

Equivalences for bicategories
® Bicategorical equivalence

® Bicategorical equivalence which is isomorphism of
hom-categories

® Jsomorphism

We can give different definitions of bicategory for each.



Double categories, formalized in UniMath
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Thank you!
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