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Introduction and motivation Fuzzy propositional logic Fuzzy type theory

Motivation

§ To develop a language in which to model opinions

§ To develop a type theory in which to verify fuzzy control
systems

§ To (begin to) generalize the correspondence between category
theory and type theory to a correspondence with enriched
category theory on one side

§ To obtain another generalization of Martin-Löf type theory
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What is an opinion?
§ Logic of propositions

§ Model with complete lattices (posets with all co/limits)
§ Products (coproducts) represent conjunction (disjunction)
§ The terminal object J (initial object K) represents the true

(false) proposition
§ Write P ď Q to mean that P implies Q.
§ P holds when J ď P.

§ Logic of facts
§ Model with up-sets (slices) of lattices.
§ Given a lattice L of propositions, and a piece of evidence e P L,

e{L is the poset of propositions implied by e.
§ More generally, we can take a subcategory E of L.

§ Logic of opinions
§ Model with fuzzy lattices and fuzzy up-sets
§ Above, we answer “Is P ď Q?” or “Does P hold?” with “yes”

or “no”, i.e., “0” or “1”.
§ Now we answer “Is P ď Q?” or “Does P hold?” with a value

in an ordered monoid, for instance r0, 1s.
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What is an opinion?

Proof irrelevant Proof relevant

Propositions

Type theory

‚ Posets

‚ Categories

‚ Categories enriched in t0, 1u

‚ Categories enriched in Set

Opinions

Fuzzy type theory

‚ Fuzzy posets

‚ Fuzzy categories (?)

‚ Categories enriched in r0, 1s

‚ Categories enriched in fuzzy sets,
sets with a function to r0, 1s

§ Goal: develop the bottom-right box.
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Opinion dynamics (jww Robert Ghrist and Hans Riess)

§ Previously, opinions were modeled by real-valued vectors.

§ Opinion space was some real vector space.

§ Modeling things as vectors plugs you in to a lot of
computational tools,

§ but it’s akin to modeling propositional logic as a t0, 1u-valued
vector space.

§ Want to capture more of the structure with a tailor-made
algebraic notion.
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Enriched categories

Booleans

§ The natural ordering on the booleans B :“ t0, 1u forms a
category.

§ It has a monoidal structure given by multiplication.
§ Thus, we can consider a B-enriched category C:

§ a set of objects obpCq,
§ for each pair x , y P obpCq, an object hompx , yq of B,
§ for each x P obpCq, a point 1 Ñ hompx , xq

§ for each x , y , z P obpCq, a morphism
˝ : hompx , yq ¨ hompy , zq Ñ hompx , zq.

§ such that ...

We can interpret hompx , yq as indicating whether or not x ď y .
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Enriched categories

The interval

§ The natural ordering on the interval I :“ r0, 1s forms a
category.

§ It has a monoidal structure given by multiplication.
§ Thus, we can consider a I-enriched category C:

§ a set of objects obpCq,
§ for each pair x , y P obpCq, an object hompx , yq of I,
§ for each x P obpCq, a point 1 “ hompx , xq

§ for each x , y , z P obpCq, a morphism
˝ : hompx , yq ¨ hompy , zq ď hompx , zq.

§ such that ...

We can interpret hompx , yq as indicating to what extent x ď y .
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Enriched categories

§ In general, we can replace B or I with any monoidal category,
but here we consider only monoidal categories which are
posets, i.e., ordered monoids M.

§ Then, given an M-enriched category C (representing a space
of opinions) we ask that it has the enriched (fuzzy) versions of
all limits and colimits: all weighted limits and colimits.

§ Then we consider a network of individuals, each with their
own opinion space and opinion that they are communicating,
and study dynamics.

§ Encode the network as a graph, and consider a sheaf over it,
valued in the category of M-enriched categories.
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Weighted limits and colimits

§ In a category, we can consider the product A ˆ B of two
objects, A, B

§ But the concept of ‘weighted limits’ allows us to weight both
A and B by sets α and β.

§ The product with this weighting is then the product of
α-many copies of A and β-many copies of B (Aα ˆβ B)

§ In a M-enriched category, to take a product of A and B, we
take weights α, β P M.

§ Then Aα ^β B behaves like a conjunction of A scaled down by
α and B scaled down by β.
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Weighted meets and joins

Let:

§ S “ “Alice likes strawberry ice cream.”

§ C “ “Alice likes chocolate ice cream.”

§ B “ “Alice likes chocolate ice cream better than strawberry
ice cream.”

§ α P r0, 1s

Then we can consider:

§ αS “ “Alice likes strawberry ice cream with intensity α.”

§ B1^αS “ “B and αS”.

We can prove a ‘fuzzy modus ponens’:

§ pB1^αS ď C q “ α and pB1^αS ď αC q “ 1
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Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean
O’Connor, Hans Riess, Ana Tenório)

§ In the last section, we fuzzified propositional logic by seeing it
as a part of category theory, and fuzzifying the enrichment
from B to I or M.

§ Now we fuzzify Martin-Löf type theory by a similar route.

§ People might have multiple reasons for their opinions, so this
seems appropriate.
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Simple type theory

There is an equivalence of categories between simply typed
λ-calculi and cartesian closed categories.

STLC CCC

type A object A
term x : A $ bpxq : B morphism b : A Ñ B
conjunction A ^ B product A ˆ B
implication A ñ B exponential BA

To fuzzify this, we consider on the right-hand side SetpMq-enriched
categories.
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Fuzzy sets

SetpMq is the category whose

§ objects are pairs pX , νq where X is a set and ν : X Ñ M

§ morphisms pX , νq Ñ pY , µq are functions f : X Ñ Y such
that νpxq ď µpfxq for all x P X

X Y

M

f

ν
ď µ

It inherits a monoidal structure from the ones on Set and M:

§ pX , νq b pX , µq :“ pX ˆ Y , ν ¨ µq

§ The monoidal unit is p˚, 1q.
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Fuzzy categories

Definition

A SetpMq-enriched category C consists of

§ a set of objects obpCq,

§ for each pair x , y P obpCq, an object hompx , yq of SetpMq,
§ for each x P obpCq, a point p1, ˚q Ñ hompx , xq

§ i.e., an element of hompx , yq with value 1

§ for each x , y , z P obpCq, a morphism
˝ : hompx , yq b hompy , zq Ñ hompx , zq.

§ i.e., a function ˝ : hompx , yq ˆ hompy , zq Ñ hompx , zq such
that |f ||g | ď |g ˝ f |

§ such that ...

§ Now there can be multiple morphisms/reasons of a
type/opinion, but each one comes with some intensity.
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Dependent type theory

§ We’ve talked about propositional logic and the simply typed
λ-calculus, and their categorical interpretations.

§ Our goal is actually dependent type theory.
§ Proof relevant first-order logic.
§ Types can be indexed by other types, just as predicates in

first-order logic are indexed by sets.
§ In propositional logic, we have types/propositions A, in

simply-types λ-calculus, we have terms/proofs
x : A $ bpxq : B, and in dependent type theory we have
dependent types x : A $ Bpxq.
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Display map categories

Definition

A display map category is a pair pC,Dq of a category C and a class
D of morphisms (called display maps) of C such that

§ C has a terminal object ˚

§ every map X Ñ ˚ is a display map

§ D is stable under pullback

§ The objects interpret types, the morphisms interpret terms,
and the display maps interpret dependent types, and sections
of display maps interpret dependent terms.

§ From a dependent type x : B $ E pxq, we can always form
$ π : Σx :BE pxq Ñ B, and this is represented by the display
maps.
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Fuzzy display map categories

Definition

A fuzzy display map category is a pair pC,Dq of a SetpMq-enriched
category C and a class D of morphisms (called fuzzy display maps)
of C, each of which has value 1, such that

§ C has a terminal object ˚

§ every map X Ñ ˚ is a display map

§ D is stable under particular weighted pullbacks
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Fuzzy terms

§ The objects of a fuzzy display map category represent types
(or contexts).

§ The display maps d : E Ñ B represent dependent types.

§ In non-fuzzy display map categories, terms are represented as
sections of display maps. Now our sections are fuzzy.

Definition

An α-fuzzy section of a fuzzy display map is a section with value
at least α.

§ These represent terms x : B $ s :α E pxq.
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Substitution / weighted pullbacks

In the definition of fuzzy display-map category, we ask that the
class of display maps is stable under particular weighted pullbacks.

‚ E

A B

d

f

§ We choose the weight on A to be the singleton with value 1
and the weight on B to be the singleton with the value of f .

§ Thus, the vertical maps have the same value (1), as do the
horizontal maps.
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Structural rules

$˛ ctx
(C-Emp) Γ$A Type

$Γ,x :A ctx
(C-Ext)

$Γ,x :A,∆ ctx
Γ,x :A,∆$x :1A

(Var) Γ$s:αA
Γ$s:βA

for β ď α (Cons)

Γ,∆$B Type Γ$A Type
Γ,x :A,∆$B Type

pWeakty q
Γ,∆$b:βB Γ$A Type

Γ,x :A,∆$b:βB
pWeaktmq

Γ,x :A,∆$B Type Γ$a:αA
Γ,∆ra{xs$Bra{xs Type

pSubstty q
Γ,x :A,∆$b:βB Γ$a:αA
Γ,∆ra{xs$bra{xs:βBra{xs

pSubsttmq

Theorem

Fuzzy display map categories validate these rules.
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Future work

Goals and questions

§ Add type formers, like weighted conjunction

§ Do we want to fuzzify other relations in type theory, like
equality?

§ Use this to study opinion dynamics
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Thank you!
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