Fuzzy propositional logic

Fuzzy type theory

(Towards a) Fuzzy type theory

Paige Randall North

Utrecht University

20 Dec 2023

Fuzzy propositional logic

Fuzzy type theory

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Fuzzy propositional logic

Fuzzy type theory

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

▶ To develop a language in which to model opinions

- To develop a language in which to model opinions
- To develop a type theory in which to verify fuzzy control systems

- ► To develop a language in which to model opinions
- To develop a type theory in which to verify fuzzy control systems
- To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side

- To develop a language in which to model opinions
- To develop a type theory in which to verify fuzzy control systems
- To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side
- ► To obtain another generalization of Martin-Löf type theory

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice L of propositions, and a piece of evidence e ∈ L, e/L is the poset of propositions implied by e.
 - More generally, we can take a subcategory E of L.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice L of propositions, and a piece of evidence e ∈ L, e/L is the poset of propositions implied by e.
 - More generally, we can take a subcategory E of L.
- Logic of opinions
 - Model with fuzzy lattices and fuzzy up-sets
 - Above, we answer "Is P ≤ Q?" or "Does P hold?" with "yes" or "no", i.e., "0" or "1".
 - Now we answer "Is P ≤ Q?" or "Does P hold?" with a value in an ordered monoid, for instance [0, 1].

Proof irrelevant	Proof relevant
Propositions	
• Posets	
• Categories enriched in $\{0,1\}$	
Opinions	
 Fuzzy posets 	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	• Categories enriched in Set
Opinions	
 Fuzzy posets 	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	• Categories enriched in Set
Opinions	Fuzzy type theory
• Fuzzy posets	• Fuzzy categories (?)
• Categories enriched in [0,1]	• Categories enriched in fuzzy sets,
	sets with a function to $[0,1]$

What is an opinion?

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	• Categories enriched in Set
Opinions	Fuzzy type theory
 Fuzzy posets 	• Fuzzy categories (?)
• Categories enriched in $[0,1]$	• Categories enriched in fuzzy sets,
	sets with a function to $[0,1]$

• Goal: develop the bottom-right box.

Fuzzy propositional logic

Fuzzy type theory

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as a {0,1}-valued vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as a {0,1}-valued vector space.
- Want to capture more of the structure with a tailor-made algebraic notion.

Enriched categories

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - for each $x \in ob(\mathcal{C})$, a point $1 \rightarrow hom(x, x)$
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

Enriched categories

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - for each $x \in ob(\mathcal{C})$, a point $1 \leq hom(x, x)$
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

Enriched categories

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

Enriched categories

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - for each $x \in ob(\mathcal{C})$, a point 1 = hom(x, x)
 - ► for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

Enriched categories

Booleans

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - for each $x \in ob(\mathcal{C})$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating whether or not $x \leq y$.

Enriched categories

The interval

- ► The natural ordering on the interval I := [0,1] forms a category.
- It has a monoidal structure given by multiplication.
- Thus, we can consider a \mathbb{I} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ► for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

Enriched categories

The interval

- ► The natural ordering on the interval I := [0,1] forms a category.
- It has a monoidal structure given by multiplication.
- Thus, we can consider a \mathbb{I} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - for each $x \in ob(\mathcal{C})$, a point 1 = hom(x, x)
 - ► for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating **to what extent** $x \leq y$.

Enriched categories

- In general, we can replace B or I with any monoidal category, but here we consider only monoidal categories which are posets, i.e., ordered monoids M.
- ▶ Then, given an M-enriched category C (representing a space of opinions) we ask that it has the enriched (fuzzy) versions of all limits and colimits: all weighted limits and colimits.
- Then we consider a network of individuals, each with their own opinion space and opinion that they are communicating, and study dynamics.
 - Encode the network as a graph, and consider a sheaf over it, valued in the category of M-enriched categories.

Weighted limits and colimits

- In a category, we can consider the product A × B of two objects, A, B
- But the concept of 'weighted limits' allows us to weight both
 A and B by sets α and β.
- The product with this weighting is then the product of α-many copies of A and β-many copies of B (A^α ×^β B)
- ▶ In a \mathbb{M} -enriched category, to take a product of A and B, we take weights $\alpha, \beta \in M$.
- Then $A^{\alpha} \wedge^{\beta} B$ behaves like a conjunction of A scaled down by α and B scaled down by β .

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."
- $\alpha \in [0,1]$

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."

Then we can consider:

- ${}^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."

Then we can consider:

- ${}^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

We can prove a 'fuzzy modus ponens':

• $(B^1 \wedge^{\alpha} S \leqslant C) = \alpha$ and $(B^1 \wedge^{\alpha} S \leqslant^{\alpha} C) = 1$

Fuzzy propositional logic

Fuzzy type theory ●0000000000000

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean O'Connor, Hans Riess, Ana Tenório)

- In the last section, we fuzzified propositional logic by seeing it as a part of category theory, and fuzzifying the enrichment from B to I or M.
- Now we fuzzify Martin-Löf type theory by a similar route.
- People might have multiple reasons for their opinions, so this seems appropriate.

Fuzzy propositional logic

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

STLC	CCC
type A	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A \times B$
implication $A \Rightarrow B$	exponential B ^A

Fuzzy propositional logic

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

STLC	CCC
type A	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A \times B$
implication $A \Rightarrow B$	exponential B ^A

To fuzzify this, we consider on the right-hand side $\operatorname{Set}(\mathbb{M})$ -enriched categories.

Fuzzy sets

 $Set(\mathbb{M})$ is the category whose

- ▶ objects are pairs (X, ν) where X is a set and $\nu : X \to M$
- ▶ morphisms $(X, \nu) \rightarrow (Y, \mu)$ are functions $f : X \rightarrow Y$ such that $\nu(x) \leq \mu(fx)$ for all $x \in X$

It inherits a monoidal structure from the ones on Set and \mathbb{M} :

- $(X,\nu)\otimes(X,\mu):=(X\times Y,\nu\cdot\mu)$
- ▶ The monoidal unit is (*, 1).

Fuzzy categories

Definition

A $\operatorname{Set}(\mathbb{M})$ -enriched category $\mathcal C$ consists of

- ▶ a set of objects ob(C),
- ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of $Set(\mathbb{M})$,
- ▶ for each $x \in ob(C)$, a point $(1, *) \rightarrow hom(x, x)$
 - i.e., an element of hom(x, y) with value 1
- ▶ for each $x, y, z \in ob(C)$, a morphism
 - \circ : hom $(x, y) \otimes$ hom $(y, z) \rightarrow$ hom(x, z).
 - ▶ i.e., a function \circ : hom $(x, y) \times$ hom $(y, z) \rightarrow$ hom(x, z) such that $|f||g| \leq |g \circ f|$
- such that ...
- Now there can be multiple morphisms/reasons of a type/opinion, but each one comes with some intensity.

Dependent type theory

- We've talked about propositional logic and the simply typed λ-calculus, and their categorical interpretations.
- Our goal is actually dependent type theory.
 - Proof relevant first-order logic.
 - Types can be indexed by other types, just as predicates in first-order logic are indexed by sets.
 - In propositional logic, we have types/propositions A, in simply-types λ-calculus, we have terms/proofs x : A ⊢ b(x) : B, and in dependent type theory we have dependent types x : A ⊢ B(x).

Display map categories

Definition

A *display map category* is a pair (\mathcal{C}, D) of a category \mathcal{C} and a class D of morphisms (called *display maps*) of \mathcal{C} such that

- \blacktriangleright ${\mathcal C}$ has a terminal object \ast
- every map $X \rightarrow *$ is a display map
- D is stable under pullback
- The objects interpret types, the morphisms interpret terms, and the display maps interpret dependent types, and sections of display maps interpret dependent terms.
- From a dependent type $x : B \vdash E(x)$, we can always form $\vdash \pi : \Sigma_{x:B}E(x) \rightarrow B$, and this is represented by the display maps.

Fuzzy display map categories

Definition

A fuzzy display map category is a pair (\mathcal{C}, D) of a Set(\mathbb{M})-enriched category \mathcal{C} and a class D of morphisms (called *fuzzy display maps*) of \mathcal{C} , each of which has value 1, such that

- \mathcal{C} has a terminal object *
- every map $X \rightarrow *$ is a display map
- D is stable under particular weighted pullbacks

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Definition

An α -fuzzy section of a fuzzy display map is a section with value at least α .

• These represent terms $x : B \vdash s :_{\alpha} E(x)$.

Substitution / weighted pullbacks

In the definition of *fuzzy display-map category*, we ask that the class of display maps is stable under particular weighted pullbacks.

- We choose the weight on A to be the singleton with value 1 and the weight on B to be the singleton with the value of f.
- Thus, the vertical maps have the same value (1), as do the horizontal maps.

Fuzzy propositional logic

Fuzzy type theory

Structural rules

$$\begin{array}{ll} \frac{\Gamma \vdash A \operatorname{Type}}{\vdash \neg, x: A, \Delta \operatorname{ctx}} \left(\mathsf{C}\text{-}\mathsf{Emp} \right) & \frac{\Gamma \vdash A \operatorname{Type}}{\vdash \neg, x: A \operatorname{ctx}} \left(\mathsf{C}\text{-}\mathsf{Ext} \right) \\ \frac{\vdash \Gamma, x: A, \Delta \operatorname{ctx}}{\Gamma, x: A, \Delta \vdash x: 1^{A}} \left(\mathsf{Var} \right) & \frac{\Gamma \vdash s: {}_{\alpha}A}{\Gamma \vdash s: {}_{\beta}A} \text{ for } \beta \leqslant \alpha \left(\mathsf{Cons} \right) \\ \frac{\Gamma, \Delta \vdash B \operatorname{Type}}{\Gamma, x: A, \Delta \vdash B \operatorname{Type}} & (\operatorname{Weak}_{ty}) & \frac{\Gamma, \Delta \vdash b: {}_{\beta}B}{\Gamma, x: A, \Delta \vdash b: {}_{\beta}B} & \Gamma \vdash A \operatorname{Type}}{\Gamma, x: A, \Delta \vdash B \operatorname{Type}} \left(\mathsf{Weak}_{ty} \right) \\ \frac{\Gamma, x: A, \Delta \vdash B \operatorname{Type}}{\Gamma, \Delta [a/x] \vdash B [a/x] \operatorname{Type}} \left(\mathsf{Subst}_{ty} \right) & \frac{\Gamma, x: A, \Delta \vdash b: {}_{\beta}B}{\Gamma, \Delta [a/x] \vdash b [a/x] \operatorname{Type}} \left(\mathsf{Subst}_{tm} \right) \end{array}$$

Theorem

Fuzzy display map categories validate these rules.

Fuzzy propositional logic

Future work

Goals and questions

- Add type formers, like weighted conjunction
- Do we want to fuzzify other relations in type theory, like equality?
- Use this to study opinion dynamics

Fuzzy type theory 000000000000

Thank you!