Forerunners

Endofunctors

Coinductive control of inductive data types

Paige Randall North and Maximilien Péroux

Published in CALCO 2023 arXiv:2303.16793

18 July 2023

Overview 0 Categorical W-types

Forerunners

Endofunctors 000000000000

Outline

Overview

Categorical W-types

Forerunners

Endofunctors

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

Get more control over algebras

Get more "initial algebras" (e.g. generalized W-types)

Endofunctors

Natural numbers

Syntax

Inductive N : Type := | 0 : N $| s : N \rightarrow N.$

Endofunctors

Natural numbers

Syntax

Inductive N : Type := | 0 : N $| s : N \rightarrow N.$

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + X$ on Set.
- 2. An algebra is a set X together with $\langle 0_X, s_X \rangle : 1 + X \to X$.
- 3. The initial algebra is \mathbb{N} .

Natural numbers

Syntax

Inductive N : Type := | 0 : N $| s : N \rightarrow N.$

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + X$ on Set.
- 2. An algebra is a set X together with $\langle 0_X, s_X \rangle : 1 + X \to X$.
- 3. The initial algebra is \mathbb{N} .

Coinductive data types and coalgebras

- 1. A coalgebra is a set X together with $X \rightarrow 1 + X$.
- 2. The terminal coalgebra is \mathbb{N}^{∞} .

Lists

Syntax

Inductive list (A) : Type := | nil : list (A) | cons : $A \rightarrow list(A) \rightarrow list(A)$.

Lists

Syntax

```
Inductive list (A) : Type :=
| nil : list (A)
| cons : A \rightarrow list(A) \rightarrow list(A).
```

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + A \times X$ on Set.
- 2. An algebra is a set X with $\langle nil_X, cons_X \rangle : 1 + A \times X \rightarrow X$.
- 3. The initial algebra is $\mathbb{L}ist(A)$.

Lists

Syntax

Inductive list (A) : Type := | nil : list (A) | cons : $A \rightarrow list(A) \rightarrow list(A)$.

Categorical semantics

- 1. Consider the endofunctor $X \mapsto 1 + A \times X$ on Set.
- 2. An algebra is a set X with $\langle nil_X, cons_X \rangle : 1 + A \times X \rightarrow X$.
- 3. The initial algebra is $\mathbb{L}ist(A)$.

Coinductive data types and coalgebras

- 1. A coalgebra is a set X together with $X \rightarrow 1 + A \times X$.
- 2. The terminal coalgebra is Stream(A).

Endofunctors

Previous work on coalgebraic enrichment

Univeral measuring coalgebra (Wraith, Sweedler 1968)

For k-algebras A and B, there is a k-coalgebra Alg(A, B)

- which underlies an enrichment of k-algebras in k-coalgebras
- whose *set-like elements*¹ are in bijection with Alg(A, B).

Taking B := k, one gets the dual Alg(A, k) of A.

Extensions

- Anel-Joyal 2013 (dg-algebras)
- Hyland-Franco-Vasilakopoulou 2017 (monoids)
- Vasilakopoulou 2019 (V-categories)
- ▶ Péroux 2022 (∞-algebras of an ∞-operad)
- McDermott-Rivas-Uustalu 2022 (monads)

¹those $c \in Alg(A, B)$ s.t. $\Delta c = c \otimes c$ and $\epsilon(c) = 1_A$

Enriched categories

Definition

An enrichment of a category ${\mathcal C}$ in a monoidal category ${\mathcal V}$ consists of

- ▶ a functor $\underline{C}(-,-)$: $C^{op} \times C \to V$
- a morphism $\mathbb{I} \to \underline{C}(A, A)$ for each $A \in \text{ob } C$
- ▶ a morphism $\underline{C}(A, B) \otimes \underline{C}(B, C) \rightarrow \underline{C}(A, C)$ for $A, B, C \in ob C$
- an isomorphism $\mathcal{V}(\mathbb{I}, \underline{\mathcal{C}}(A, B)) \cong \mathcal{C}(A, B)$ for $A, B \in \text{ob } \mathcal{C}$.

such that ...

Remark

Monoidal closed means enriched in itself.

Endofunctors •000000000000

Measuring in general

Fix a locally presentable, symmetric monoidal closed category C and an accessible, lax symmetric monoidalendofunctor F.

Measuring

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{C}(A, B)$ satisfying: $FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \longrightarrow \underline{C}(FA, FB)$ \downarrow^{β} $\underline{C}(A, B) \xrightarrow{\alpha} \underline{C}(FA, B)$

The universal measure Alg(A, B) is the terminal one.

Endofunctors •000000000000

Measuring in general

Fix a locally presentable, symmetric monoidal closed category C and an accessible, lax symmetric monoidalendofunctor F.

Measuring

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{C}(A, B)$ satisfying: $FC \xrightarrow{F(\phi)} F(\underline{C}(A, B)) \longrightarrow \underline{C}(FA, FB)$ \downarrow^{β} $\underline{C}(A, B) \xrightarrow{\alpha} \underline{C}(FA, B)$

The universal measure Alg(A, B) is the terminal one.

Theorem (N.-Péroux)

The universal measure $\underline{Alg}(A, B)$ always exists, and these are the hom-coalgebras of an enrichment of Alg(F) in CoAlg(F).

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

The universal measure Alg(A, B) is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B, a measure $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

The universal measure Alg(A, B) is the terminal measure $A \rightarrow B$.

What is this?

Forerunners

Endofunctors

Set-like elements in general

Definition

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

Forerunners

Endofunctors

Set-like elements in general

Definition

The set-like elements are

$$1 \to \underline{\mathsf{Alg}}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

• The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.

Forerunners

Endofunctors

Set-like elements in general

Definition

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B) \qquad \text{in } \mathsf{CoAlg}(F)$$

i.e., elements of Alg(A, B).

That is

- The *points* of Alg(A, B) are total algebra homomorphisms $A \rightarrow B$.
- If we're considering (Set, ×, ∗), the underlying set of I is ∗, so these are 'special' elements of the underlying set of Alg(A, B).

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$I \to \underline{\mathsf{Alg}}(A, B)$$

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!]=\infty$

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \operatorname{Alg}(A, B)$ is an element $* \in \operatorname{Alg}(A, B)$ s.t. $[\![*]\!] = \infty$

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $* \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![*]\!] = \infty$ so f_* is a total algebra homomorphism

Measuring

 $f_c(0_A) = 0_B \text{ for all } c \in C;$...

•
$$f_c(a+1) = f_{c-1}(a) + 1$$
 for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $* \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![*]\!] = \infty$ so f_* is a total algebra homomorphism

Measuring

•
$$f_*(0_A) = 0_B$$

• •

•
$$f_*(a+1) = f_*(a) + 1$$
 for all $a \in A$.

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$] \to \underline{\mathsf{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $* \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![*]\!] = \infty$ so f_* is a total algebra homomorphism that is, an element of $\operatorname{Alg}(A, B)$.

Measuring

•
$$f_*(0_A) = 0_B;$$

• •

•
$$f_*(a+1) = f_*(a) + 1$$
 for all $a \in A$.

Endofunctors

Set-like elements for the natural numbers

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $* \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![*]\!] = \infty$ so f_* is a total algebra homomorphism that is, an element of $\operatorname{Alg}(A, B)$.

Example

 $\begin{array}{l} \mathsf{Alg}(\mathbb{N},A)\cong\ast\\ \mathsf{Alg}(\mathbb{N},A)\cong\mathbb{N}^\infty\end{array}$

Endofunctors

What are the non-set-like elements?

Example

 $\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^\infty$

What are the non-set-like elements?

Example

 $\underline{\mathsf{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

Measuring

. . .

•
$$f_0(a+1) = 0_B$$
 and for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

. . .

Measuring

•
$$f_0(a+1) = 0_B$$
 and for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

Measuring

•
$$f_1(0_A) = 0_B$$

•
$$f_1(a+1) = f_0(a) + 1$$
 for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

• $f_1(0) = 0_A \cdot f_1(sn)$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

Measuring

•
$$f_1(0_A) = 0_B$$

•
$$f_1(a+1) = f_0(a) + 1$$
 for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

• $f_1(0) = 0_A \cdot f_1(sn)$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

Measuring

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

•
$$f_{\infty}(n) = n_A$$

Measuring

. . .

•
$$f_{\infty}(0) = 0_B$$

•
$$f_{\infty}(a+1) = f_{\infty}(a) + 1$$

What are the non-set-like elements?

Example

$$\underline{\mathsf{Alg}}(\mathbb{N},A)\cong\mathbb{N}^{\infty}$$

So denote the elements of $\mathsf{Alg}(\mathbb{N},A)$ by

•
$$f_0(n) = 0_A$$

•
$$f_1(0) = 0_A; f_1(sn) = 1_A$$

•
$$f_{\infty}(n) = n_A$$

Definition

. . .

So we call elements of the underlying of $\underline{Alg}(A, B)$ *n-partial algebra homomorphisms*.

Forerunners

Endofunctors

What are the non-set-like elements?

- Let \mathbb{n} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n}, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \ge n; \\ \varnothing & \text{otherwise.} \end{cases}$$

Forerunners

Endofunctors

What are the non-set-like elements?

- Let \square denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n}, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \ge n; \\ \varnothing & \text{otherwise.} \end{cases}$$

$$\underline{\operatorname{Alg}}(\mathbb{n},A) \cong \begin{cases} \mathbb{N}^{\infty} & \text{if } n_A = m_A \text{ for all } m \ge n; \\ \mathbb{n}^{\circ} & \text{otherwise.} \end{cases}$$

So there is at least always an *n*-partial homomorphism out of *n* (which is unique).

What can we do with this?

Generalize W-types, i.e., initial algebras.

C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A such that for all other algebras B there is a unique

$$C \to \underline{\operatorname{Alg}}(A, B).$$

Initial object

An initial object in a category C is an object A such that for all other algebras B there is a unique

$$* \to \mathcal{C}(A, B).$$

Endofunctors

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the *I*-initial algebra
- \mathbb{N} is the \mathbb{N}^{∞} -initial algebra

Endofunctors

C-initial objects for the natural numbers

Examples

For the natural-numbers endofunctor:

- ▶ N is the *I*-initial algebra
- \mathbb{N} is the \mathbb{N}^{∞} -initial algebra
- \blacktriangleright I- (or $\mathbb{N}^\infty\text{-})$ initial means initial with respect to total algebra homomorphisms

Theorem

 ${\tt m}$ is the ${\tt m}^\circ\mathchar`-initial$ algebra

 n°-initial means initial with respect to partial algebra homomorphisms

Examples

(Endofunctors on a locally presentable symmetric monoidal category)

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- $(F \otimes G)$ The tensor of two instances (C closed)
- (F + G) The coproduct of an instance F and an '*F*-module' G(id^A) The exponential id^A at object A (C cartesian closed)
- W-types) The polynomial endofunctor associated to a morphism
 - $f: X \to Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1}: C \to \text{Set} (C = \text{Set})$
 - (d.e.s.) A discrete equational system (monoidal structure on C is cocartesian, C has binary products that preserve filtered colimits)

Summary

We have

- that algebras are enriched in coalgebras (under certain hypotheses)
- an interpretation as notion of partial algebra homomorphism (especially in the case N)
- many examples
- a more refined notion of initial algebra

Future work

- Work out more of the examples in detail
- Understand C-initial algebras in more examples and in general
- Understand if this extra structure is useful for programming languages
- Understand if there is a connection with domain theory

Overview 0 Categorical W-types

Forerunners

Endofunctors

Thank you!