Formalizing the algebraic small object argument in UniMath

Dennis Hilhorst and Paige Randall North

Utrecht University

12 September 2024

[Introduction and motivation](#page-1-0) [Our approach](#page-26-0)

[Introduction and motivation](#page-1-0)

[Our approach](#page-26-0)

[Introduction and motivation](#page-1-0) [Our approach](#page-26-0)

Results

▶ We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath

Results

- ▶ We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- ▶ UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
	- ▶ Large category theory library

Results

- ▶ We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- ▶ UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
	- ▶ Large category theory library
- ▶ The SOA is a fundamental tool in modern homotopy theory
	- \triangleright Used to construct most *model categories*
	- ▶ Used for most models of HoTT/UF

Results

- ▶ We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- ▶ UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
	- ▶ Large category theory library
- ▶ The SOA is a fundamental tool in modern homotopy theory
	- \triangleright Used to construct most *model categories*
	- ▶ Used for most models of HoTT/UF
- ▶ So our goal is to build the tools to formalize models of HoTT/UF
	- \triangleright e.g. Voevodsky's model in simplicial sets

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \leftrightarrow Path space

Dependent types \leftrightarrow Fibrations (right lifting property)

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \leftrightarrow Path space

Dependent types \leftrightarrow Fibrations (right lifting property)

▶ Thus, model MLTT in (nice) model categories

 \blacktriangleright E.g. simplicial sets,² which homotopy theorists use as their model of spaces

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \leftrightarrow Path space

Dependent types \leftrightarrow Fibrations (right lifting property)

▶ Thus, model MLTT in (nice) model categories

- \blacktriangleright E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- \blacktriangleright UF = MLTT + Univalence axiom²

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \leftrightarrow Path space

Dependent types \leftrightarrow Fibrations (right lifting property)

▶ Thus, model MLTT in (nice) model categories

- \blacktriangleright E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- \blacktriangleright UF = MLTT + Univalence axiom²
- \blacktriangleright HoTT = UF + higher inductive types

¹Awodey-Warren

²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \leftrightarrow Path space

Dependent types \leftrightarrow Fibrations (right lifting property)

▶ Thus, model MLTT in (nice) model categories

- \blacktriangleright E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- \triangleright UF = MLTT + Univalence axiom²
- \blacktriangleright HoTT = UF + higher inductive types
- \triangleright Coq UniMath = Coq Prop + Univalence axiom

¹Awodey-Warren ²Voevodsky

▶ Fundamental in algebraic topology

- ▶ Fundamental in algebraic topology
- ▶ Are 'cellular' and 'well-behaved'
	- \blacktriangleright Co/homology is easy to compute
	- ▶ Can detect homotopy equivalences by computing homotopy groups

- ▶ Fundamental in algebraic topology
- ▶ Are 'cellular' and 'well-behaved'
	- \triangleright Co/homology is easy to compute
	- ▶ Can detect homotopy equivalences by computing homotopy groups
- ▶ Obtained by gluing together disks along their boundaries

- ▶ Fundamental in algebraic topology
- ▶ Are 'cellular' and 'well-behaved'
	- \triangleright Co/homology is easy to compute
	- ▶ Can detect homotopy equivalences by computing homotopy groups
- ▶ Obtained by gluing together disks along their boundaries
- ▶ Formally given as the limit X_{∞} of a sequence of spaces

$$
X_{-1}\subseteq X_0\subseteq X_1\subseteq\cdots
$$

where $X_{-1} := \emptyset$ and X_{n+1} is obtained from X_n by gluing disks D^m along their boundaries S^{m-1} to X_n .

$$
S^{m-1} \longrightarrow X_n
$$

$$
\downarrow \qquad \qquad \Gamma \qquad \downarrow
$$

$$
D^m \longrightarrow X_{n+1}
$$

- ▶ Fundamental in algebraic topology
- ▶ Are 'cellular' and 'well-behaved'
	- \triangleright Co/homology is easy to compute
	- ▶ Can detect homotopy equivalences by computing homotopy groups
- ▶ Obtained by gluing together disks along their boundaries
- ▶ Formally given as the limit X_{∞} of a sequence of spaces

$$
X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots
$$

where $X_{-1} := \emptyset$ and X_{n+1} is obtained from X_n by gluing disks D^m along their boundaries S^{m-1} to X_n .

Given a space X , can approximate by a *relative* CW complex.

Get a sequence

$$
\emptyset \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X_{\infty} \to X.
$$

Given a map $f: X \to Y$, can approximate by a relative CW complex.

Get a sequence

$$
X\subseteq Mf_0\subseteq Mf_1\subseteq\cdots\subseteq Mf_\infty\to Y.
$$

whose composition is f .

Given a map $f: X \to Y$, can approximate by a relative CW complex.

Get a sequence

$$
X\subseteq Mf_0\subseteq Mf_1\subseteq\cdots\subseteq Mf_\infty\to Y
$$

whose composition is f .

SOA 3: The classical statement

The small object argument

Quillen's small object argument gives conditions that ensure that

- \blacktriangleright given a class of maps $\mathcal I$ in a category $\mathcal C$
	- ▶ e.g. $\{S^{n-1} \hookrightarrow D^n\}_n$ in topological spaces
- ▶ any map $f : X \to Y$ factorizes as $X \to Mf_{\infty} \to Y$ where $Mf_{\infty} \to Y$ has the right lifting property with respect to \mathcal{I} .

Use (with some niceness conditions)

Model Martin-Löf's identity type by factoring the diagonal

Lifting properties

Right lifting property

A map $f: X \rightarrow Y$ has the right lifting property against $\mathcal I$ if for all (solid) commutative squares, there exists a (dashed) lift making the diagram commute.

Use (with omitted details)

Transport can be characterized as a right lifting property.

Constructivity

- \blacktriangleright The "exists" above is classical existence.
	- ▶ Leads to problems without axiom of choice.
- \blacktriangleright Instead, we turn to *algebraic* versions of these concepts, where the lift is given as algebraic structure

Algebraic small object argument

Garner's small object argument

Garner's small object argument gives conditions that ensure that

▶ given a small category of maps $\mathcal I$ in a category $\mathcal C$

- ▶ any map $f: X \rightarrow Y$ factorizes as $X \stackrel{Lf}{\longrightarrow} Mf_{\infty} \stackrel{Rf}{\longrightarrow} Y$ where L is a comonad and R is a monad (this ensures the lifting condition).
- ▶ Moreover, the construction 'converges': while Quillen's SOA adds the same cells over and over again, Garner's adds them only as needed.

Our result

We formalize Garner's SOA.

[Introduction and motivation](#page-1-0)

0000000

0000000

000000

[Introduction and motivation](#page-1-0)

[Our approach](#page-26-0)

UniMath

- ▶ We use UniMath because our experience convinces us that it's the right setting in which to formalize category theory.
- \blacktriangleright However, the univalence axiom was not needed.
- ▶ Thus, we use MLTT (Coq Prop) with the following concepts from HoTT/UF:
	- ▶ homotopy levels (propositions, sets)
	- ▶ propositional truncation
	- \blacktriangleright displayed categories

Categories

- \triangleright We don't use the univalence axiom or univalent categories.
- ▶ We use the *categories* of the UniMath library (called precategories in the HoTT book).

Category

A category consists of a type ob : UU and a dependent type mor : ob \rightarrow ob \rightarrow hSet together with identities, composition, and axioms.

- \blacktriangleright These can be assumed to be
	- \triangleright setcategories: ob is a (homotopy) set
	- **►** univalent:³ the morphism $(x = y) \rightarrow (x \cong y)$ is an equivalence for x, y : ob, making ob a (homotopy) groupoid

³Ahrens-Kapulkin-Shulman

Displayed categories⁴

 \blacktriangleright In HoTT/UF, the equality type behaves weakly.

- \blacktriangleright If a category is univalent, the equality type captures isomorphism.
- ▶ To define *factorization*, classically we ask for a section of the functor \circ : $\mathcal{C}^{\rightarrow\rightarrow} \rightarrow \mathcal{C}^{\rightarrow}$.
- ▶ To do this in UniMath, we encode $C\rightarrow\rightarrow$ as a *displayed* category over C^{\rightarrow} (analogous to dependent type).
	- ▶ Over each $f \in \mathcal{C}^{\rightarrow}$: the type of factorizations of f.
	- \blacktriangleright Then a section consists of a (functorial) factorization of each f (analogous to dependent term).
- ▶ I.e. describing a section using equality is too weak, so we use displayed categories to access strict equality

⁴Ahrens-Lumsdaine

Monoidal categories

- \triangleright We also encode the categories of (left/right) natural weak factorization systems on a category C as displayed monoidal categories over functorial factorizations.
- ▶ Where Garner uses *strict* monoidal categories (i.e. certain axioms hold up to classical equality), we generalize to monoidal categories.
	- ▶ Again, because we do not have access to classical equality

Limitations and future work

▶ We only formalized the SOA where the transfinite composition – i.e., the sequence

 $X \subseteq Mf_0 \subseteq \cdots$

– has length ω .

 \triangleright Would like to generalize this to more general ordinals.

▶ Continue this program of formalizing the semantics of HoTT in HoTT.

[Introduction and motivation](#page-1-0) [Our approach](#page-26-0)

Thank you!