Formalizing the algebraic small object argument in UniMath

Dennis Hilhorst and Paige Randall North

Utrecht University

12 September 2024

Introduction and motivation 0000000

Our approach

Introduction and motivation

Our approach

Introduction and motivation •000000

Results

 We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath

Results

- We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
 - Large category theory library

Introduction and motivation •000000

Results

- We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
 - Large category theory library
- The SOA is a fundamental tool in modern homotopy theory
 - Used to construct most model categories
 - Used for most models of HoTT/UF

Introduction and motivation

Results

- We formalized (the relevant part of) Garner's small object argument (SOA) in Coq UniMath
- UniMath is a library based on Univalent Foundations (UF) (i.e. homotopy type theory (HoTT))
 - Large category theory library
- The SOA is a fundamental tool in modern homotopy theory
 - Used to construct most model categories
 - Used for most models of HoTT/UF
- So our goal is to build the tools to formalize models of HoTT/UF
 - e.g. Voevodsky's model in simplicial sets

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \iff Path space

Dependent types *we* Fibrations (right lifting property)

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

MLTT Quillen model categories

Equality type \iff Path space

Dependent types Fibrations (right lifting property)

Thus, model MLTT in (nice) model categories

 E.g. simplicial sets,² which homotopy theorists use as their model of spaces

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

<u>MLTT</u> Quillen model categories

Equality type \iff Path space

Dependent types Fibrations (right lifting property)

Thus, model MLTT in (nice) model categories

- E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- ► UF = MLTT + Univalence axiom²

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory:¹

<u>MLTT</u> Quillen model categories

Equality type \iff Path space

Dependent types Fibrations (right lifting property)

Thus, model MLTT in (nice) model categories

- E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- ► UF = MLTT + Univalence axiom²
- ► HoTT = UF + higher inductive types

¹Awodey-Warren ²Voevodsky

HoTT/UF arises from the observation that in the denotational (categorical) semantics of Martin-Löf Type Theory: $^{\rm 1}$

<u>MLTT</u> Quillen model categories

Equality type \iff Path space

Dependent types Fibrations (right lifting property)

Thus, model MLTT in (nice) model categories

- E.g. simplicial sets,² which homotopy theorists use as their model of spaces
- ► UF = MLTT + Univalence axiom²
- ► HoTT = UF + higher inductive types
- Coq UniMath = Coq Prop + Univalence axiom

¹Awodey-Warren ²Voevodsky

Our approach

SOA 1: CW complexes

Fundamental in algebraic topology

- Fundamental in algebraic topology
- Are 'cellular' and 'well-behaved'
 - Co/homology is easy to compute
 - Can detect homotopy equivalences by computing homotopy groups

- Fundamental in algebraic topology
- Are 'cellular' and 'well-behaved'
 - Co/homology is easy to compute
 - Can detect homotopy equivalences by computing homotopy groups
- Obtained by gluing together disks along their boundaries

- Fundamental in algebraic topology
- Are 'cellular' and 'well-behaved'
 - Co/homology is easy to compute
 - Can detect homotopy equivalences by computing homotopy groups
- Obtained by gluing together disks along their boundaries
- Formally given as the limit X_{∞} of a sequence of spaces

$$X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots$$

where $X_{-1} := \emptyset$ and X_{n+1} is obtained from X_n by gluing disks D^m along their boundaries S^{m-1} to X_n .

$$\begin{array}{ccc} S^{m-1} & \longrightarrow & X_n \\ & & & & & \downarrow \\ & & & & & \downarrow \\ D^m & \longrightarrow & X_{n+1} \end{array}$$

- Fundamental in algebraic topology
- Are 'cellular' and 'well-behaved'
 - Co/homology is easy to compute
 - Can detect homotopy equivalences by computing homotopy groups
- Obtained by gluing together disks along their boundaries
- Formally given as the limit X_{∞} of a sequence of spaces

$$X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots$$

where $X_{-1} := \emptyset$ and X_{n+1} is obtained from X_n by gluing disks D^m along their boundaries S^{m-1} to X_n .

Given a space X, can approximate by a *relative* CW complex.

Get a sequence

$$\emptyset \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X_\infty \to X.$$

Given a map $f : X \to Y$, can approximate by a *relative* CW complex.

Get a sequence

$$X \subseteq Mf_0 \subseteq Mf_1 \subseteq \cdots \subseteq Mf_\infty \to Y.$$

whose composition is f.

Given a map $f : X \to Y$, can approximate by a *relative* CW complex.

Get a sequence

$$X \subseteq Mf_0 \subseteq Mf_1 \subseteq \cdots \subseteq Mf_\infty \to Y$$

whose composition is f.

SOA 3: The classical statement

The small object argument

Quillen's small object argument gives conditions that ensure that

- \blacktriangleright given a class of maps ${\cal I}$ in a category ${\cal C}$
 - e.g. $\{S^{n-1} \hookrightarrow D^n\}_n$ in topological spaces
- Any map f : X → Y factorizes as X → Mf_∞ → Y where Mf_∞ → Y has the right lifting property with respect to I.

Use (with some niceness conditions)

Model Martin-Löf's identity type by factoring the diagonal

Introduction and motivation 0000000

Lifting properties

Right lifting property

A map $f : X \to Y$ has the *right lifting* property against \mathcal{I} if for all (solid) commutative squares, there exists a (dashed) lift making the diagram commute.

Use (with omitted details)

Transport can be characterized as a right lifting property.

Constructivity

- ► The "exists" above is classical existence.
 - Leads to problems without axiom of choice.
- Instead, we turn to algebraic versions of these concepts, where the lift is given as algebraic structure

Algebraic small object argument

Garner's small object argument

Garner's small object argument gives conditions that ensure that

- \blacktriangleright given a small category of maps ${\cal I}$ in a category ${\cal C}$
- Any map f : X → Y factorizes as X → Mf_∞ Rf → Y where L is a comonad and R is a monad (this ensures the lifting condition).
- Moreover, the construction 'converges': while Quillen's SOA adds the same cells over and over again, Garner's adds them only as needed.

Our result

We formalize Garner's SOA.

Introduction and motivation 0000000

Our approach

Introduction and motivation

Our approach

UniMath

- We use UniMath because our experience convinces us that it's the right setting in which to formalize category theory.
- However, the univalence axiom was not needed.
- Thus, we use MLTT (Coq Prop) with the following concepts from HoTT/UF:
 - homotopy levels (propositions, sets)
 - propositional truncation
 - displayed categories

Categories

- We don't use the univalence axiom or univalent categories.
- We use the *categories* of the UniMath library (called precategories in the HoTT book).

Category

A category consists of a type ob : UU and a dependent type mor : ob \rightarrow ob \rightarrow hSet together with identities, composition, and axioms.

- These can be assumed to be
 - setcategories: ob is a (homotopy) set
 - Inivalent:³ the morphism (x = y) → (x ≅ y) is an equivalence for x, y : ob, making ob a (homotopy) groupoid

³Ahrens-Kapulkin-Shulman

Displayed categories⁴

► In HoTT/UF, the equality type behaves weakly.

- If a category is univalent, the equality type captures isomorphism.
- ► To define *factorization*, classically we ask for a section of the functor $\circ : C^{\rightarrow \rightarrow} \rightarrow C^{\rightarrow}$.
- To do this in UniMath, we encode C→→ as a displayed category over C→ (analogous to dependent type).
 - Over each $f \in C^{\rightarrow}$: the type of factorizations of f.
 - Then a section consists of a (functorial) factorization of each f (analogous to dependent term).
- I.e. describing a section using equality is too weak, so we use displayed categories to access strict equality

⁴Ahrens-Lumsdaine

Monoidal categories

- We also encode the categories of (left/right) natural weak factorization systems on a category C as displayed monoidal categories over functorial factorizations.
- Where Garner uses strict monoidal categories (i.e. certain axioms hold up to classical equality), we generalize to monoidal categories.
 - Again, because we do not have access to classical equality

Limitations and future work

We only formalized the SOA where the transfinite composition – i.e., the sequence

 $X \subseteq Mf_0 \subseteq \cdots$

– has length ω .

Would like to generalize this to more general ordinals.

 Continue this program of formalizing the semantics of HoTT in HoTT. Introduction and motivation

Our approach

Thank you!