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Introduction and motivation Our approach

Results

▶ We formalized (the relevant part of) Garner’s small object
argument (SOA) in Coq UniMath

▶ UniMath is a library based on Univalent Foundations (UF)
(i.e. homotopy type theory (HoTT))
▶ Large category theory library

▶ The SOA is a fundamental tool in modern homotopy theory
▶ Used to construct most model categories
▶ Used for most models of HoTT/UF

▶ So our goal is to build the tools to formalize models of
HoTT/UF
▶ e.g. Voevodsky’s model in simplicial sets
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Homotopy type theory / univalent foundations

HoTT/UF arises from the observation that in the denotational
(categorical) semantics of Martin-Löf Type Theory:1

MLTT Quillen model categories

Equality type ↭ Path space

Dependent types ↭ Fibrations (right lifting property)

▶ Thus, model MLTT in (nice) model categories
▶ E.g. simplicial sets,2 which homotopy theorists use as their

model of spaces

▶ UF = MLTT + Univalence axiom2

▶ HoTT = UF + higher inductive types

▶ Coq UniMath = Coq - Prop + Univalence axiom

1Awodey-Warren
2Voevodsky
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SOA 1: CW complexes
▶ Fundamental in algebraic topology

▶ Are ‘cellular’ and ‘well-behaved’
▶ Co/homology is easy to compute
▶ Can detect homotopy equivalences by computing homotopy

groups

▶ Obtained by gluing together disks along their boundaries

▶ Formally given as the limit X∞ of a sequence of spaces

X−1 ⊆ X0 ⊆ X1 ⊆ · · ·

where X−1 := ∅ and Xn+1 is obtained from Xn by gluing disks
Dm along their boundaries Sm−1 to Xn.

∐

Sm−1 Xn

∐

Dm Xn+1

I
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SOA 2: approximation by CW complexes

Given a space X , can approximate by a relative CW complex.∐
Sm−1 ∅

∐
Dm X

I

Get a sequence

∅ ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X∞ → X .

whose composition is f .
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SOA 2: approximation by CW complexes

Given a map f : X → Y , can approximate by a relative CW
complex. ∐

Sm−1 X

∐
Dm Mf0

Y

I f
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SOA 3: The classical statement

The small object argument

Quillen’s small object argument gives conditions that ensure that
▶ given a class of maps I in a category C

▶ e.g. {Sn−1 ↪→ Dn}n in topological spaces

▶ any map f : X → Y factorizes as X → Mf∞ → Y where
Mf∞ → Y has the right lifting property with respect to I.

Use (with some niceness conditions)

Model Martin-Löf’s identity type by factoring the diagonal

X M∆∞ X × X

∆
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Lifting properties

Right lifting property

A map f : X → Y has the right lifting
property against I if for all (solid)
commutative squares, there exists a (dashed)
lift making the diagram commute.

• X

• Y

I∋ f

Use (with omitted details)

Transport can be characterized as a right lifting property.

Constructivity

▶ The “exists” above is classical existence.
▶ Leads to problems without axiom of choice.

▶ Instead, we turn to algebraic versions of these concepts, where
the lift is given as algebraic structure
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Algebraic small object argument

Garner’s small object argument

Garner’s small object argument gives conditions that ensure that

▶ given a small category of maps I in a category C
▶ any map f : X → Y factorizes as X

Lf−→ Mf∞
Rf−→ Y where L

is a comonad and R is a monad (this ensures the lifting
condition).

▶ Moreover, the construction ‘converges’: while Quillen’s SOA
adds the same cells over and over again, Garner’s adds them
only as needed.

Our result

We formalize Garner’s SOA.
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UniMath

▶ We use UniMath because our experience convinces us that it’s
the right setting in which to formalize category theory.

▶ However, the univalence axiom was not needed.
▶ Thus, we use MLTT (Coq - Prop) with the following concepts

from HoTT/UF:
▶ homotopy levels (propositions, sets)
▶ propositional truncation
▶ displayed categories
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Categories

▶ We don’t use the univalence axiom or univalent categories.

▶ We use the categories of the UniMath library (called
precategories in the HoTT book).

Category

A category consists of a type ob : UU and a dependent type
mor : ob → ob → hSet together with identities, composition, and
axioms.

▶ These can be assumed to be
▶ setcategories: ob is a (homotopy) set
▶ univalent:3 the morphism (x = y) → (x ∼= y) is an equivalence

for x , y : ob, making ob a (homotopy) groupoid

3Ahrens-Kapulkin-Shulman
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Displayed categories4

▶ In HoTT/UF, the equality type behaves weakly.
▶ If a category is univalent, the equality type captures

isomorphism.

▶ To define factorization, classically we ask for a section of the
functor ◦ : C→→ → C→.

▶ To do this in UniMath, we encode C→→ as a displayed
category over C→ (analogous to dependent type).
▶ Over each f ∈ C→: the type of factorizations of f .
▶ Then a section consists of a (functorial) factorization of each f

(analogous to dependent term).

▶ I.e. describing a section using equality is too weak, so we use
displayed categories to access strict equality

4Ahrens-Lumsdaine
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Monoidal categories

▶ We also encode the categories of (left/right) natural weak
factorization systems on a category C as displayed monoidal
categories over functorial factorizations.

▶ Where Garner uses strict monoidal categories (i.e. certain
axioms hold up to classical equality), we generalize to
monoidal categories.
▶ Again, because we do not have access to classical equality
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Limitations and future work

▶ We only formalized the SOA where the transfinite
composition – i.e., the sequence

X ⊆ Mf0 ⊆ · · ·

– has length ω.
▶ Would like to generalize this to more general ordinals.

▶ Continue this program of formalizing the semantics of HoTT
in HoTT.
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Thank you!
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