Weak factorization systems as models of dependent type theory

Paige North

Ohio State University

11 January 2018

Overview: preliminaries

Problem

To identify those weak factorization systems which harbor a model of the Σ , Π , and Id types of dependent type theory.

Formulation

Use the theory of *display map categories* to formulate our problem.

Display map categories and weak factorization systems

Definition of *display map category*

A category C with a terminal object and a class of *display maps* D satisfying closure properties (has all isos & maps to *; all PBs of display maps exist & are display maps).

- The simplest categorical framework for modeling dependent type theory
- The closest to the theory of weak factorization systems

Definition of weak factorization system

A category C with two classes of maps $(\mathcal{L}, \mathcal{R})$ such that every map of C factors into an \mathcal{L} -map followed by an \mathcal{R} -map, \mathcal{L} are the maps with the left lifting property against \mathcal{R} , and vice versa.

Overview: results

Theorem 1: reducing the problem.

Let ${\cal C}$ be a Cauchy complete category with a class of display maps ${\cal D}$ which model Σ and Id types. Then:

- 1. $\overline{\mathcal{D}}$ (the retract closure of \mathcal{D}) is itself a class of display maps which models Σ and ld types.
- 2. And if \mathcal{D} models Π types, then $\overline{\mathcal{D}}$ models Π types.

 $({}^{\square}\mathcal{D},\overline{\mathcal{D}})$ is a weak factorization system (Gambino-Garner, 2008). Thus:

- Every model \mathcal{D} of Σ , Id (Π) types 'lives inside' another model $\overline{\mathcal{D}}$ which is the right class of a weak factorization system.
- To know whether a WFS (*L*, *R*) 'harbors' a model of Σ, Id (Π) types, we need only determine whether *R* itself is a model.

Overview: results

Theorem 2: the characterization.

Let C be a finitely complete category with a weak factorization system $(\mathcal{L}, \mathcal{R})$. Then the following are equivalent:

- 1. ${\mathcal R}$ is a class of display maps which models Σ and Id types.
- 2. Every map to the terminal object is in \mathcal{R} and \mathcal{L} is stable under pullback along \mathcal{R} .
- 3. $(\mathcal{L}, \mathcal{R})$ is generated by a Moore relation structure.

And if the above are true and ${\cal C}$ is locally cartesian closed, then ${\cal R}$ models Π types.

 Moore relation structure: algebraic data which generate the WFS

Σ and Π types

Definition of Σ types

A DMC $(\mathcal{C},\mathcal{D})$ models Σ types when \mathcal{D} is closed under composition.

Definition of Π types

A DMC $(\mathcal{C},\mathcal{D})$ models Π types when for all

$$W \xrightarrow{g} X \xrightarrow{f} Y \in \mathcal{D}$$

there is a display map representing

$$\hom_{\mathcal{C}/X}(f^*-,g):(\mathcal{C}/Y)^{op}\to Set.$$

Id types

Definition of Id types

A DMC (C, D) models Id types *on objects* when for every object *Y* of *C*, there is a factorization of the diagonal

$$Y \xrightarrow{r} \mathsf{Id}(Y) \xrightarrow{\epsilon_0 \times \epsilon_1} Y \times Y$$

such that $\epsilon_0 \times \epsilon_1$ is in \mathcal{D} and every pullback of r has the left lifting property against \mathcal{D} (or: is in $\square \mathcal{D}$).

The factorization

• Σ and Id types produce a factorization of any map $f: X \to Y$

$$X \xrightarrow{1 \times rf} X \times_Y \operatorname{Id}(Y) \xrightarrow{\epsilon_1 \pi} Y$$

where the left map is in $\square D$ and the right map is in D.

- This generates a weak factorization system $(\[mu]\mathcal{D}, \overline{\mathcal{D}})$.
- $\overline{\mathcal{D}}$ is the retract closure of \mathcal{D}

Cauchy complete categories.

Definition: Cauchy complete category

A category for which any retract of a representable presheaf is itself representable.

- DMC, Σ, and Π types can be phrased in terms of the existence of representable functors built out of display maps.
- So can deduce existence of those built from $\overline{\mathcal{D}}$ from the existence of those built from \mathcal{D} .

Theorem 1

 $(\mathcal{C}, \mathcal{D})$ a CC DMC modeling Σ and Id (and Π) types. Then $(\mathcal{C}, \overline{\mathcal{D}})$ is a DMC modeling Σ and Id (and Π) types.

The characterization

 $\ensuremath{\mathcal{C}}$ finitely complete category.

- *W* := category of WFSs (*L*, *R*) on *C* where every map to the terminal object is in *R* and *L* is stable under pullback along *R*.
- $\mathcal{I} := category of Id-types-on-objects in C.$

There are functors:

$$F: \mathcal{W} \leftrightarrows \mathcal{I}: G$$

- ▶ *F* takes a WFS to its factorization of the diagonal maps
- G builds a WFS from an Id-types-on-objects as we did above

Using Moore relation structures, we find:

Theorem 2

F and G form an equivalence of categories.

Thank you!