
1/26

The Equivalence Principle and Univalent
Foundations

Paige Randall North

13 September 2021

2/26

Outline

1 The equivalence principle

2 Dependent type theory

3 Univalent foundations

3/26

The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.

Notion of equivalence depends on the objects under consideration:
• equal numbers, functions,. . .
• isomorphic sets, groups, rings,. . .
• equivalent categories
• biequivalent bicategories
• . . .

3/26

The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.

Notion of equivalence depends on the objects under consideration:
• equal numbers, functions,. . .
• isomorphic sets, groups, rings,. . .
• equivalent categories
• biequivalent bicategories
• . . .

4/26

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise
Find a statement about sets that is not invariant under isomorphism:

{;, {;}} ∼= {;, {{;}}}

{;} ∈ X

Exercise
Find a statement about categories that is not invariant under
equivalence:

•
##

cc • ' •

C has exactly 1 object.

4/26

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise
Find a statement about sets that is not invariant under isomorphism:

{;, {;}} ∼= {;, {{;}}}

{;} ∈ X

Exercise
Find a statement about categories that is not invariant under
equivalence:

•
##

cc • ' •

C has exactly 1 object.

5/26

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal
To have a syntactic criterion for properties and constructions that are
invariant under equivalence

5/26

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal
To have a syntactic criterion for properties and constructions that are
invariant under equivalence

6/26

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

6/26

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

6/26

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

7/26

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

7/26

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

7/26

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

8/26

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?
• What about other mathematical structures?

8/26

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?

• What about other mathematical structures?

8/26

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?
• What about other mathematical structures?

9/26

Outline

1 The equivalence principle

2 Dependent type theory

3 Univalent foundations

10/26

What is type theory?

• Type theory is a language for mathematics, akin to category
theory.

• Sentences are of the following form:
• a1 : A1, ...,an : An ` B(a1, ...,an) type
• a1 : A1, ...,an : An ` b(a1, ...,an) : B(a1, ...,an)

• e.g.
• x,y : obC ` homC (x,y) type
• x : obC ` 1x : homC (x,x)

• We conflate mathematical objects and mathematical statements.
• n : N ` isEven(n) type
• n : N ` e(n) : isEven(2n)
• n : N ` Vectn(N) type
• n : N ` 0(n) : Vectn(N)

11/26

Interpretations of type theory

• Examples:
• n : N ` isEven(n) type
• n : N ` e(n) : isEven(2n)
• n : N ` Vectn(N) type
• n : N ` 0(n) : Vectn(N)

• There are many interpretations of dependent type theory:

Contexts Types Terms
Logical hypotheses predicates proofs
Set theoretic indices indexed sets sections
Homotopical base space total space sections

12/26

Type formers

• We can define the natural numbers, booleans, the circle, and
coproducts as initial objects in the following way. (Dependent)
functions and (dependent) products are defined similarly.

Natural numbers

` N type ` 0 : N

` x : N

` sx : N

x : N ` D(x) type ` z : D(0) x : N,y : D(x) ` σ(y) : D(sx)

x : N ` d(x) : D(x)
` d(0)≡ z : D(0) x : N ` σ(d(x))≡ d(sx) : D(sx)

13/26

Type formers

Binary product

` A type ` B type

` A× B type

` a : A ` b : B

` 〈a,b〉 : A× B

x : A× B ` D(x) type a : A,b : B ` σ(a,b) : D〈a,b〉

x : A× B ` d(x) : D(x)
a : A,b : B ` σ(a,b)≡ d〈a,b〉 : D〈a,b〉

• Set interpretation: ×
• Logical interpretation: ∧

13/26

Type formers

Binary product

` A type ` B type

` A× B type

` a : A ` b : B

` 〈a,b〉 : A× B

x : A× B ` D(x) type a : A,b : B ` σ(a,b) : D〈a,b〉

x : A× B ` d(x) : D(x)
a : A,b : B ` σ(a,b)≡ d〈a,b〉 : D〈a,b〉

• Set interpretation: ×
• Logical interpretation: ∧

14/26

Type formers

Dependent sums

a : A ` B(a) type

` Σa:AB(a) type

` a : A ` b : B(a)

` 〈a,b〉 : Σa:AB(a)

x : Σa:AB(a) ` D(x) type a : A,b : B(a) ` σ(a,b) : D〈a,b〉

x : Σa:AB(a) ` d(x) : D(x)
a : A,b : B(a) ` σ(a,b)≡ d〈a,b〉 : D〈a,b〉

• Set interpretation: ∪a:AB(a)
• Logical interpretation: ∃a:AB(a)

15/26

The surprising type former

Identity type

` A type ` a,b : A

` a=A b

` A type ` a : A

` refla : a=A a

` A type x,y : A, p : x =A y ` D(p) type x : A ` ρ(x) : D(reflx)

x,y : A, p : x =A y ` d(p) : D(p)
x : A ` ρ(x)≡ d(reflx) : D(reflx)

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.
• Equalities are invertible.
• Equalities are composable.
• There can be “higher” equalities.
• This makes types behave like
homotopy types or spaces.

a b

c

e

g

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.

• Equalities are invertible.
• Equalities are composable.
• There can be “higher” equalities.
• This makes types behave like
homotopy types or spaces.

a b

c

e

f

g

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.
• Equalities are invertible.

• Equalities are composable.
• There can be “higher” equalities.
• This makes types behave like
homotopy types or spaces.

a b

c

e

f

g−1

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.
• Equalities are invertible.
• Equalities are composable.

• There can be “higher” equalities.
• This makes types behave like
homotopy types or spaces.

a b

c

e

f

g−1e ∗ g−1

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.
• Equalities are invertible.
• Equalities are composable.
• There can be “higher” equalities.

• This makes types behave like
homotopy types or spaces.

a b

c

e

f

g−1e ∗ g−1

16/26

Homotopy type theory
• Equality is given inductively, just like the natural numbers.
• The equality type a= b (for two terms a,b : A) is generated
inductively by the canonical term refla : a= a for each term a : A.
• Just as N is generated by the canonical elements 0 : N and Sn : N

for each n : N.

• We can have equalities e, f : a= b.
• Equalities are invertible.
• Equalities are composable.
• There can be “higher” equalities.
• This makes types behave like
homotopy types or spaces.

a b

c

e

f

g−1e ∗ g−1

17/26

Types as Kan complexes

We can interpret
• a type K as a Kan complex (space) [K]
• a term k : K as a point of K
• a dependent type x : B ` E(b) as a Kan fibration [p] : [E]→ [B]
• a dependent term x : B ` e(b) : E(b) as a section [e] of [p]
• a term p : a=K b as a path from a to b in K

18/26

Type formers in Martin-Löf type theory

Type former Notation canonical term

Dependent type x : A ` B(x)

Dependent term x : A ` b(x) : B(x)

Boolean type Bool >,⊥

Natural numbers type Nat 0, sx

Sum type
∑

x:A B(x) (a,b)

Product type
∏

x:A B(x) λ(x : A).b

Identity type x : A,y : A ` x = y reflx : x = x

Universe Type

19/26

Outline

1 The equivalence principle

2 Dependent type theory

3 Univalent foundations

20/26

Characterizing equalities

We can characterize the equalities in many type formers.

Theorem about equalities in N
For n,m : N, if n≡m, then (n=N m)' ∗; otherwise (n=N m)' ;.

Theorem about equalities in A× B
For p,q : A× B,

(p=A×B q)' (π1p=A π1q)× (π2p=B π2q).

Theorem about equalities in Σa:AB
For p,q : Σa:AB,

(p=Σa:AB q)' Σα:π1p=Aπ1qα
∗π2p=B(π1q) π2q.

21/26

Under-determined equalities

We could postulate:

Function extensionality
For f ,g : A→ B, the function

(f =A→B g)→ Πa:Af(a) =B g(a)
is an equivalence.

Uniqueness of identity proofs
For p,q : a=A b, we have a term of

p=a=Ab q.

Univalence
For A,B : U, the function

(A=U B)→ (A'U B)
is an equivalence.

22/26

Univalent foundations

• Function extensionality holds both in the set and the space models
(and most other ones).

• Uniqueness of identity proofs holds in the set model, but not the
space model.

• Univalence holds in the space model, but not in the set model.
Univalent foundations admits univalence as an axiom (which implies
function extensionality).

23/26

The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A→ B.
• The predicate “G is an abelian group” is a function Grp→ Prop.
• Considering the lattice of subgroups of any group G produces a
function Grp→ Latt.

Equality principle
We can prove:

∏

x,y:A
(x = y)→

∏

f :A→B

�

f(x) = f(y)
�

Everything respects equality.

23/26

The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A→ B.
• The predicate “G is an abelian group” is a function Grp→ Prop.
• Considering the lattice of subgroups of any group G produces a
function Grp→ Latt.

Equality principle
We can prove:

∏

x,y:A
(x = y)→

∏

f :A→B

�

f(x) = f(y)
�

Everything respects equality.

24/26

Back to the equivalence principle

Using univalence, we have:

Equality to equivalence principle
∏

x,y:A
(x = y)→

∏

B:A→U

�

B(x)' B(y)
�

For example:
• The predicate “G is an abelian group” is a function Grp→ Prop
which we can compose with the inclusion Prop ,→ U.

• Considering the lattice of subgroups of any group G produces a
function Grp→ Latt, which we can compose with a forgetful
functor Latt→ U.

25/26

Next time

We would like to prove an equivalence principle like
∏

G,H:Grp
(G∼= H)→

∏

B:Grp→Latt
B(G)∼= B(H)

where G∼= H is group isomorphism and B(G)∼= B(H) is lattice
isomorphism.

To be continued...

25/26

Next time

We would like to prove an equivalence principle like
∏

G,H:Grp
(G∼= H)→

∏

B:Grp→Latt
B(G)∼= B(H)

where G∼= H is group isomorphism and B(G)∼= B(H) is lattice
isomorphism.

To be continued...

26/26

Thank you!

	The equivalence principle
	Dependent type theory
	Univalent foundations

