The Equivalence Principle and Univalent
Foundations

Paige Randall North

13 September 2021



Outline

® The equivalence principle



The equivalence principle

Equivalence principle

Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.



The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.
Notion of equivalence depends on the objects under consideration:
® equal numbers, functions,. ..
® isomorphic sets, groups, rings,. . .

® equivalent categories

biequivalent bicategories



Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}

Exercise

Find a statement about categories that is not invariant under
equivalence:



Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}
{0} ex

Exercise
Find a statement about categories that is not invariant under
equivalence:

o~
° ° ~ e
el

% has exactly 1 object.



A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."



A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal

To have a syntactic criterion for properties and constructions that are
invariant under equivalence



How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..



How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

® even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then gof exists.”



How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

¢ even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then gof exists.”

Can we give a definition of category without using equality of objects?



...and how to fix it.

Solution

Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.



...and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of

® a set O of objects

for each x,y € O, a type/set A(x,y) of arrows

for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €A(x,2)

for each x € O, an identity id, € A(x,x)



...and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
® a set O of objects
e for each x,y € O, a type/set A(x,y) of arrows
® for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €Alx,z)
e for each x € O, an identity id, € A(x,x)
[}

Gives rise to dependently typed language by adding logical
connectors.



Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.



Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

® What about constructions on categories?



Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

® What about constructions on categories?

® What about other mathematical structures?



Outline

© Dependent type theory



What is type theory?

Type theory is a language for mathematics, akin to category

theory.

Sentences are of the following form:
® q:A,..a,:A,FB(a,..,a,) type
® q:A,..a,:A, Fb(a,..,a,):B(a,..,a,)

e.g.

® x,y:0b% Fhomy(x,y) type
® x:0b¥% F1,:home(x,x)

We conflate mathematical objects and mathematical statements.

n

n
n
n

: N FisEven(n) type
:NFe(n) : isEven(2n)
: N F Vect, (N) type
:NFo(n): Vect,(N)



Interpretations of type theory

® Examples:
: NI isEven(n) type
:NFe(n) : isEven(2n)
: N F Vect, (N) type
:NFo(n): Vect,(N)

® There are many interpretations of dependent type theory:

S ===

Logical
Set theoretic
Homotopical

Contexts
hypotheses
indices
base space

Types
predicates
indexed sets
total space

Terms
proofs
sections
sections




Type formers

® We can define the natural numbers, booleans, the circle, and
coproducts as initial objects in the following way. (Dependent)
functions and (dependent) products are defined similarly.
Natural numbers
Fx:N
F N type Fo:N Fsx:N

x : NF D(x) type Fz:D(o) x:N,y :D(x)F o(y) : D(sx)

x:NFd(x): D(x)
Fd(o)=2:D(0) x:NF o(d(x)) = d(sx) : D(sx)




Type formers

Binary product

FA type F B type Fa:A Fb:B
F A x B type F(a,b) :AxB

x :Ax BF D(x) type a:Ab:BtF o(a,b):D{a,b)

x:AXBFd(x):D(x)
a:Ab:BF o(a,b)=d(a,b) : D{(a,b)



Type formers

Binary product

FA type F B type Fa:A Fb:B
F A x B type F(a,b) :AxB

x :Ax BF D(x) type a:Ab:BtF o(a,b):D{a,b)

x:AXBFd(x):D(x)
a:Ab:BF o(a,b)=d(a,b) : D{(a,b)

® Set interpretation: X

® Logical interpretation: A



Type formers

Dependent sums
a:At B(a) type Fa:A kb : B(a)
F 2,.4B(a) type F (a,b) : Z,.4B(a)

x : Xg.4B(a) F D(x) type a:A,b:B(a)F o(a,b): D{a,b)

x : %gaB(a) F d(x) : D(x)
a:A,b:B(a)*F o(a,b)=d{(a,b) : D{a,b)

® Set interpretation: U,.,B(a)

® Logical interpretation: 3,.,B(a)



The surprising type former

Identity type
F A type Fab:A F A type Fa:A

Fa=,b Frefl,:a=,a
FAtype x,y:A, p:x=,yFD(p)type x:AF p(x): D(refl,)

xy:A, p:x=,ytdQp):D(p)
x:AF p(x) =d(refl,) : D(refl,)




Homotopy type theory

® Equality is given inductively, just like the natural numbers.

® The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.

® Just as N is generated by the canonical elements o : N and Sn : N
for each n : N.



Homotopy type theory

® Equality is given inductively, just like the natural numbers.

® The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.
® Just as N is generated by the canonical elements o : N and Sn : N
for eachn : N.

® We can have equalities e,f : a = b.

L)
<>



Homotopy type theory

® Equality is given inductively, just like the natural numbers.

The equality type a = b (for two terms a,b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.

® Just as N is generated by the canonical elements o : N and Sn : N
for each n : N.

We can have equalities e,f : a = b.

Equalities are invertible.




Homotopy type theory

® Equality is given inductively, just like the natural numbers.

The equality type a = b (for two terms a,b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.

® Just as N is generated by the canonical elements o : N and Sn : N
for each n : N.

We can have equalities e,f : a = b.

Equalities are invertible.

® Equalities are composable.




Homotopy type theory

® Equality is given inductively, just like the natural numbers.

® The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.

® Just as N is generated by the canonical elements o : N and Sn : N
for each n : N.

® We can have equalities e,f : a = b.
® Equalities are invertible.
® Equalities are composable.

® There can be “higher” equalities.




Homotopy type theory

® Equality is given inductively, just like the natural numbers.

® The equality type a = b (for two terms a, b : A) is generated
inductively by the canonical term refl, : a = a for each term a : A.

® Just as N is generated by the canonical elements o : N and Sn : N
for each n : N.

® We can have equalities e,f : a = b.
® Equalities are invertible.

® Equalities are composable.

® There can be “higher” equalities.

¢ This makes types behave like
homotopy types or spaces.




Types as Kan complexes

We can interpret

a type K as a Kan complex (space) [K]

aterm k : K as a point of K

a dependent type x : B+ E(b) as a Kan fibration [p] : [E] — [B]
a dependent term x : B+ e(b) : E(b) as a section [e] of [p]

atermp:a=gb as apath froma to b in K



Type formers in Martin-Lof type theory

Type former Notation canonical term
Dependent type x:A F B(x)

Dependent term x:A F b(x):B(x)

Boolean type Bool T,1

Natural numbers type Nat 0,5X

Sum type D ea BX) (a,b)

Product type [1.4B(x) Alx:A).b
Identity type x:AYy:AFx=y refl, :x=x

Universe Type



Outline

© Univalent foundations



Characterizing equalities

We can characterize the equalities in many type formers.

Theorem about equalities in N

For n,m : N, if n = m, then (n =y m) =~ x; otherwise (n =y m) ~ .

Theorem about equalities in A x B
Forp,q:A X B,

(P =axp @) ~ (71,p =4 7,q) X (7,p =p 7,q).

Theorem about equalities in X,.,B
For p,q : 2g4B,

(2 =%.4B q) ~ z:ot:rrlpzATtha*ﬂ:zp =B(n,q) T294-



Under-determined equalities

We could postulate:

Function extensionality

For f,g : A — B, the function

(f =48 8) = Mauf(a) =g gla)
is an equivalence.

Uniqueness of identity proofs
For p,q:a =4 b, we have a term of
P =a=,» q-

Univalence
For A,B : U, the function

(A=yB) — (A=~ B)
is an equivalence.



Univalent foundations

® Function extensionality holds both in the set and the space models
(and most other ones).

® Uniqueness of identity proofs holds in the set model, but not the
space model.

® Univalence holds in the space model, but not in the set model.

Univalent foundations admits univalence as an axiom (which implies
function extensionality).



The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A — B.

® The predicate “G is an abelian group” is a function Grp — Prop.

® Considering the lattice of subgroups of any group G produces a
function Grp — Latt.

Equality principle

[Te=»-[]F0=0))

xy:A f:A—B

We can prove:



The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A — B.

® The predicate “G is an abelian group” is a function Grp — Prop.

® Considering the lattice of subgroups of any group G produces a
function Grp — Latt.

Equality principle

[Te=»-[]F0=0))

xy:A f:A—B

We can prove:

Everything respects equality.



Back to the equivalence principle

Using univalence, we have:

Equality to equivalence principle

[le=»- [] B@=~5Bx))

X y:A B:A—U

For example:

® The predicate “G is an abelian group” is a function Grp — Prop
which we can compose with the inclusion Prop < U.

® Considering the lattice of subgroups of any group G produces a
function Grp — Latt, which we can compose with a forgetful
functor Latt — U.



Next time

We would like to prove an equivalence principle like

[] 6G=2m— [] B@=BM1)

G,H:Grp B:Grp—Latt

where G = H is group isomorphism and B(G) = B(H) is lattice
isomorphism.



Next time

We would like to prove an equivalence principle like

[] 6G=2m— [] B@=BM1)

G,H:Grp B:Grp—Latt

where G = H is group isomorphism and B(G) = B(H) is lattice
isomorphism.

To be continued...



Thank you!



	The equivalence principle
	Dependent type theory
	Univalent foundations

