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Last time

We have:

Equality principle
∏

x,y:A
(x = y)→

∏

f :A→B

�

f(x) = f(y)
�

We want:

Equivalence principles
e.g.

∏

G,H:Grp
(G∼= H)→

∏

B:Grp→Latt
B(G)∼= B(H)

What’s missing is a relationship between equality and notions of
equivalence.
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Different notions of equality
Synthetic vs. analytic equalities
In MLTT, we always have a (synthetic) equality type between a,b : T

a=T b.

Depending on the type T, we might have a type of “analytic equalities”

a∼= b.

A “univalence principle” for this T and this ∼= states that

(a=T b)→ (a∼= b)

is an equivalence.

The univalence axiom in type theory states that

S=U T→ S' T

is an equivalence.
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Identicals and indiscernibilites

Identity of indiscernibles
Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a= b)←
�

∀P.P(a)↔ P(b)
�

• This holds in MLTT.
• Given a ‘univalence principle’ (a=T b)' (a∼= b), we would find a

structure identity principle (in the sense of Aczel):

(a∼= b)→

�

∏

P:T→U
P(a)' P(b)

�

.
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h-levels
We can stratify (some) types into h-levels.
0: T is contractible if

isContr(T) := Σc:TΠy:T c=T y

1: T is a proposition if

isProp(T) := Πx,y:T isContr(x =T y)

2: T is a set if
isSet(T) := Πx,y:T isProp(x =T y)

3: T is a groupoid if

isGpd(T) := Πx,y:T isSet(x =T y)

n+ 1: T is of h-level n+ 1 if

ishlevel(n+ 1)(T) := Πx,y:T ishlevel(n)(x =T y)
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Propositions

Assuming the Univalence Axiom:

(S=U T)' (S' T)

for every type S,T:

Theorem (univalence for propositions)
Given two propositions P and Q,

(P=Prop Q)' (P↔ Q).
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Sets

Theorem (univalence for sets)
Given two sets S and T,

(S=Set T)' (S∼= T).

Theorem (‘structure identity principle’ for structures sets),
Coquand-Danielsson
Given terms S,T of a type S of sets with structure (groups, monoids,
etc),

(S=S T)' (S∼= T)



10/31

Categories

Theorem (univalence for categories), Ahrens-Kapulkin-Shulman
Given two univalent categories C and D,

(C =UCat D)' (C ' D).

Definition
A category C is univalent if (x =Ob(C) y)' (x ∼= y).

Example

•
##

cc • ' •
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Indiscernibility

• One way to think about isomorphism in a category between two
objects is as indiscernibility.

• In a univalent category, two objects are equal iff they are
indiscernible.

• In order to generalize univalence for univalent categories, we
generalized indiscernibility.
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Magmas

Magmas
A magma is a set M and a binary operation M×M→M.

There are two notions of ‘sameness’ for elements m,n of a magma:
1. Equality: m=M n
2. Indiscernibility:
∏

x,y:M(mx = nx)× (xm= xn)×
�

(xy =m)↔ (xy = n)
�

This produces two notions of equivalence of magmas:
1. M ∼=e N if there are morphisms f : M� N : g respecting the

operation such that gfm is equal to m for all m : M and likewise for
fgn

2. M ∼=i N if there are morphisms f : M� N : g respecting the
operation such that gfm is indiscernible from m for all m : M and
likewise for fgn
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Preorders and topological spaces

Preorders
A preorder is a set P and a reflexive, transitive relation ≤: P×P→ Prop.
Two elements p,q of a preorder P are indiscernible if

∏

x:P
(p≤ x↔ q≤ x)× (x ≤ p↔ x ≤ q)× (p≤ p↔ q≤ q)

or, equivalently, if p≤ q× q≤ p.

We get two notions of equivalence of preorders:
1. P∼=e Q
2. P∼=i Q
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A lower structure identity principle in UF

Theorem (univalence for magmas with ∼=e)
Given two magmas M,N,

(M =Mag N)' (M ∼=e N).

• This is a special case of univalence for sets with structure
(Coquand-Danielsson)

• The same holds for preorders with ∼=e.
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Another lower structure identity principle in UF?

Univalence with ∼=i

Q: Can we hope for the same with ∼=i?

A: No: for example, the projection U : Mag→ Set would then take
an equivalence M ∼=i N to an equivalence UM ∼=i UN between the
underlying sets, making it an equivalence M ∼=e N.

A: Yes: if we identify equality and indiscernibility.

For example, let 1 be the poset whose underlying set has one element,
and let 2 be the poset whose underlying set has two elements a and b
for which a≤ b and b≤ a.

• • •
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Goal

Our goal
To define a large class of (higher) univalent structures and a notion of
equivalence between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using indiscernibility for the notions of
• univalent
• equivalence

Joint work with Ahrens, Shulman, Tsementzis. arXiv:2004.06572

http://arxiv.org/abs/2004.06572
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First-order logic with dependent sorts (Makkai)

Inverse category
An inverse category is a strict category I and a function ρ : I → Natop

whose fibers are discrete.
The height of an inverse category (I ,ρ) is the maximum value of ρ.

Signatures
Signatures are inverse categories of finite height.

M A I E M

O O O
LMagma LProset LGroup
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Structures

An L -structure is a Reedy-fibrant functor from L into U .

LProset-structures

An LProset-structure S is
1. A type SO,
2. A type SA(x,y) for every x,y : O (meaning x ≤ y)

A

O

LMagma-structures

An LMagma-structure S is
1. A type SO,
2. A type SM(x,y, z) for every x,y, z : O (meaning z is

the product of x and y)

M

O

We can impose axioms on these structures.
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Indiscernibilities

Indiscernibilities between O-elements of LProset-structures
An indiscernibility between two terms p,q : SO consists of
•
∏

x:SO SA(p,x)∼= SA(q,x)
•
∏

x:SO SA(x,p)∼= SA(x,q)
• SA(p,p)∼= SA(q,q)

Indiscernibilities between O-elements of LMagma-structures
An indiscernibility between two terms m,n : SO consists of

•
∏

x,y:SO SM(m,x,y)∼= SM(n,x,y)

•
∏

x,y:SO SM(x,m,y)∼= SM(x,n,y)

•
∏

x,y:SO SM(x,y,m)∼= SM(x,y,n)

•
∏

x:SO SM(x,m,m)∼= SM(x,n,n)

•
∏

x:SO SM(m,x,m)∼= SM(n,x,n)

•
∏

x:SO SM(m,m,x)∼= SM(n,n,x)

• SM(m,m,m)∼= SM(n,n,n)
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Indiscernibilities at the top-level

Indiscernibilities between A-elements of LProset-structures
An indiscernibility between two terms a,b : SA(p,q) consists of
• -

so all terms of a,b : SA(p,q) are (trivially) indiscernible.

Definition (univalent structure)
A structure M of a signature L is univalent if the type of
indiscernibilities between any two terms of any one sort is equivalent
to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions,
and all of the next-level sorts are sets.
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Univalent structures

Proposition
A LProset-structure S is univalent when each p≤ q is a proposition and
(p= q)→ (p≤ q)× (q≤ p) is an equivalence - in other words, when A
is a poset.

Proposition
A LMagma-structure S is univalent when each SM(m,n,p) is a
proposition and
(m= n)→

∏

x,y:M(mx = nx)× (xm= xn)×
�

(xy =m)↔ (xy = n)
�

is
an equivalence.

Proposition
A topological space T is univalent when
(x = y)→

∏

U open in T(x ∈ U↔ y ∈ U) is an equivalence – in other
words, T is a T0 space.
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Lcat-structures
We can define the data of a category C to be
• A type CO :U
• A family CA :CO×CO→U
• A family C I :

∏

(x:CO)CA(x,x)→U
• A family C T :

∏

(x,y,z:CO)CA(x,y)→
CA(y, z)→CA(x, z)→U

• A family
C E :

∏

(x,y:CO)CA(x,y)→CA(x,y)→U

T I

A

O

We want to add axioms such as

∀(x,y, z : O).∀(f : A(x,y)).∀(g : A(y, z)).∀(h,h′ : A(x, z)).
T(x,y, z, f ,g,h)→ T(x,y, z, f ,g,h′)→ (h= h′)

(composites are unique), so we add an equality ‘predicate’.
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Univalent Lcat-structures
• Every two elements of C Ix(f), C Ex,y(f ,g), or C Tx,y,z(f ,g,h) are
indiscernible
• so each of these types should be a proposition.

• The axioms making E a congruence for T and I make C E(f ,g) the
type of indisceribilities between f ,g :CA(x,y)
• so we should have (f = g) =C E(f ,g), making each CA(x,y) a set.

• The indiscernibilities between a,b :CO consist of
1. φx• :CA(x,a)'CA(x,b) for each x :CO
2. φ•z :CA(a, z)'CA(b, z) for each z :CO
3. φ•• :CA(a,a)'CA(b,b)
4. The following for all appropriate w,x,y, z, f ,g,h:

Tx,y,a(f ,g,h)↔ Tx,y,b(f ,φy•(g),φx•(h)) Ia,a(f)↔ Ib,b(φ••(f))

Tx,a,z(f ,g,h)↔ Tx,b,z(φx•(f),φ•z(g),h) Ex,a(f ,g)↔ Ex,b(φx•(f),φx•(g))

Ta,z,w(f ,g,h)↔ Tb,z,w(φ•z(f),g,φ•w(h)) Ea,x(f ,g)↔ Eb,x(φ•x(f),φ•x(g))

Tx,a,a(f ,g,h)↔ Tx,b,b(φx•(f),φ••(g),φx•(h)) Ea,a(f ,g)↔ Eb,b(φ••(f),φ••(g))

Ta,x,a(f ,g,h)↔ Tb,x,b(φ•x(f),φx•(g),φ••(h))

Ta,a,x(f ,g,h)↔ Tb,b,x(φ••(f),φ•x(g),φ•x(h))

Ta,a,a(f ,g,h)↔ Tb,b,b(φ••(f),φ••(g),φ••(h))
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Univalent Lcat-structures continued

Proposition
The type of indiscernibilities between a,b :CO is equivalent to a∼= b.

Proof.
The isomorphisms φx• :CA(x,a)∼=CA(x,b) are natural by

C Tx,y,a(f ,g,h)↔C Tx,y,b(f ,φy•(g),φx•(h))

(saying φy•(g) ◦ f = φx•(g ◦ f)). The rest of the data is redundent.

Thus, in a univalent Lcat-structure, (a= b)' (a∼= b).

Theorem
Univalent Lcat-structures are equivalent to the univalent categories of
Ahrens-Kapulkin-Shulman.
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Categorical equivalences
Theorem (univalence for univalent categories)
(Ahrens-Kapulkin-Shulman)
Given univalent categories C ,D,

(C = D)' (C ' D)

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence F :C ' D of
Lcat+e-structures consists of surjections
• FO :CO� DO
• FA :CA(x,y)� DA(Fx,Fy) for every x,y :CO
• FT :C T(f ,g,h)� DT(Ff ,Fg,Fh) for all

f :CA(x,y),g :CA(y, z),h :CA(x, z)
• FE :C E(f ,g)� DE(Ff ,Fg) for all f ,g :CA(x,y)
• FI :C I(f)� DI(Ff) for all f :CA(x,x)
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A very surjective morphism or equivalence F :C ' D of univalent
Lcat+e-structures consists of surjections
• FO :CO� DO
• FA :CA(x,y)∼=DA(Fx,Fy) for every x,y :CO
• FT :C T(f ,g,h)↔DT(Ff ,Fg,Fh) for all

f :CA(x,y),g :CA(y, z),h :CA(x, z)
• FE : (f = g)↔(Ff = Fg) for all f ,g :CA(x,y)
• FI :C I(f)↔DI(Ff) for all f :CA(x,x)
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Equivalences in general

Definition (equivalence)
An equivalence M ' N between two L -structures is a very
split-surjective morphism M→ N.

Theorem
Given two univalent L -structures M and N,

(M = N)' (M ' N).

Theorem
For a signature L : Sig(n), the type of univalent L-structures is of h-level
n+ 1.
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Example: magmas

Equivalences of univalent magmas
An equivalence of magmas N,P consists of surjections
• FO : NO� PO
• FM : NM(x,y, z)� PM(Fx,Fy,Fz)
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Summary

For every signature L , we have
• a notion of indiscernibility within each sort,
• a notion of univalent structures,
• a notion of equivalence,
• a univalence theorem,
• and thus a (higher) structure identity principle.

The paper includes examples of
• †-categories,
• presheaves,
• profunctors,
• semi-displayed categories,
• bicategories,
• ...
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Thank you!
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