Proving the equivalence principle in Univalent Foundations

Paige Randall North

20 September 2021

Outline

(1) Motivation

2 Lower equivalence principles in univalent foundations

3 First-order logic with dependent sorts (FOLDS) for lower structures
(4) FOLDS categories

Last time

We have:
Equality principle

$$
\prod_{x, y: A}(x=y) \rightarrow \prod_{f: A \rightarrow B}(f(x)=f(y))
$$

Last time

We have:
Equality principle

$$
\prod_{x, y: A}(x=y) \rightarrow \prod_{f: A \rightarrow B}(f(x)=f(y))
$$

We want:
Equivalence principles
e.g.

$$
\prod_{G, H: G r p}(G \cong H) \rightarrow \prod_{B: G r p \rightarrow \text { Latt }} B(G) \cong B(H)
$$

Last time

We have:
Equality principle

$$
\prod_{x, y: A}(x=y) \rightarrow \prod_{f: A \rightarrow B}(f(x)=f(y))
$$

We want:

Equivalence principles

> e.g.

$$
\prod_{G, H: G r p}(G \cong H) \rightarrow \prod_{B: G r p \rightarrow \text { Latt }} B(G) \cong B(H)
$$

What's missing is a relationship between equality and notions of equivalence.

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a (synthetic) equality type between $a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow(a \cong b)
$$

is an equivalence.

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a (synthetic) equality type between $a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow(a \cong b)
$$

is an equivalence.
The univalence axiom in type theory states that

$$
S=_{\mathscr{U}} T \rightarrow S \simeq T
$$

is an equivalence.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftrightarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.
- Given a 'univalence principle' $\left(a=_{T} b\right) \simeq(a \cong b)$, we would find a structure identity principle (in the sense of Aczel):

$$
(a \cong b) \rightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Outline

(1) Motivation

2 Lower equivalence principles in univalent foundations

3 First-order logic with dependent sorts (FOLDS) for lower structures
(4) FOLDS categories

h-levels

We can stratify (some) types into h-levels.
$\mathrm{o}: T$ is contractible if

$$
\text { isContr}(T):=\Sigma_{c: T} \Pi_{y: T} c={ }_{T} y
$$

1: T is a proposition if

$$
\text { isProp }(T):=\Pi_{x, y: T} \text { isContr }\left(x=_{T} y\right)
$$

2: T is a set if

$$
\operatorname{isSet}(T):=\Pi_{x, y: T} \text { isProp }\left(x=_{T} y\right)
$$

3: T is a groupoid if

$$
\operatorname{isGpd}(T):=\Pi_{x, y: T} \operatorname{isSet}\left(x=_{T} y\right)
$$

$n+1: T$ is of h-level $n+1$ if ishlevel $(n+1)(T):=\Pi_{x, y: T}$ ishlevel $(n)\left(x==_{T} y\right)$

Propositions

Assuming the Univalence Axiom:

$$
\left(S=_{\mathscr{U}} T\right) \simeq(S \simeq T)
$$

for every type S, T :
Theorem (univalence for propositions)
Given two propositions P and Q,

$$
(P=\operatorname{Prop} Q) \simeq(P \leftrightarrow Q)
$$

Sets

Theorem (univalence for sets)

Given two sets S and T,

$$
(S=\mathrm{Set} T) \simeq(S \cong T)
$$

Theorem ('structure identity principle' for structures sets),
Coquand-Danielsson
Given terms S, T of a type \mathscr{S} of sets with structure (groups, monoids, etc),

$$
\left(S=_{\mathscr{S}} T\right) \simeq(S \cong T)
$$

Categories

Theorem (univalence for categories), Ahrens-Kapulkin-Shulman Given two univalent categories C and D,

$$
(C=\operatorname{ucat} D) \simeq(C \simeq D) .
$$

Definition
A category C is univalent if $\left(x=_{O b(C)} y\right) \simeq(x \cong y)$.

Categories

Theorem (univalence for categories), Ahrens-Kapulkin-Shulman Given two univalent categories C and D,

$$
(C=\mathrm{ucat} D) \simeq(C \simeq D) .
$$

Definition
A category C is univalent if $\left(x=_{O b(C)} y\right) \simeq(x \cong y)$.

Example

Indiscernibility

- One way to think about isomorphism in a category between two objects is as indiscernibility.
- In a univalent category, two objects are equal iff they are indiscernible.
- In order to generalize univalence for univalent categories, we generalized indiscernibility.

Magmas

Magmas

A magma is a set M and a binary operation $M \times M \rightarrow M$.
There are two notions of 'sameness' for elements m, n of a magma:

1. Equality: $m={ }_{M} n$
2. Indiscernibility:
$\prod_{x, y: M}(m x=n x) \times(x m=x n) \times((x y=m) \leftrightarrow(x y=n))$
This produces two notions of equivalence of magmas:
3. $M \cong{ }_{e} N$ if there are morphisms $f: M \leftrightarrows N: g$ respecting the operation such that $g f m$ is equal to m for all $m: M$ and likewise for fgn
4. $M \cong_{i} N$ if there are morphisms $f: M \leftrightarrows N: g$ respecting the operation such that $g f m$ is indiscernible from m for all $m: M$ and likewise for $f g n$

Preorders and topological spaces

Preorders

A preorder is a set P and a reflexive, transitive relation $\leq: P \times P \rightarrow$ Prop. Two elements p, q of a preorder P are indiscernible if

$$
\prod_{x: P}(p \leq x \leftrightarrow q \leq x) \times(x \leq p \leftrightarrow x \leq q) \times(p \leq p \leftrightarrow q \leq q)
$$

or, equivalently, if $p \leq q \times q \leq p$.
We get two notions of equivalence of preorders:

1. $P \cong{ }_{e} Q$
2. $P \cong{ }_{i} Q$

A lower structure identity principle in UF

Theorem (univalence for magmas with \cong_{e})

Given two magmas M, N,

$$
\left(M=_{\operatorname{Mag}} N\right) \simeq\left(M \cong{ }_{e} N\right)
$$

- This is a special case of univalence for sets with structure (Coquand-Danielsson)
- The same holds for preorders with \cong_{e}.

Another lower structure identity principle in UF?

Univalence with \cong_{i}
Q: Can we hope for the same with \cong_{i} ?

Another lower structure identity principle in UF?

Univalence with \cong_{i}

Q: Can we hope for the same with \cong_{i} ?
A: No: for example, the projection U : Mag \rightarrow Set would then take an equivalence $M \cong{ }_{i} N$ to an equivalence $U M \cong_{i} U N$ between the underlying sets, making it an equivalence $M \cong{ }_{e} N$.

For example, let $\mathbf{1}$ be the poset whose underlying set has one element, and let 2 be the poset whose underlying set has two elements a and b for which $a \leq b$ and $b \leq a$.

Another lower structure identity principle in UF?

Univalence with \cong_{i}

Q: Can we hope for the same with \cong_{i} ?
A: No: for example, the projection U : Mag \rightarrow Set would then take an equivalence $M \cong_{i} N$ to an equivalence $U M \cong_{i} U N$ between the underlying sets, making it an equivalence $M \cong{ }_{e} N$.
A: Yes: if we identify equality and indiscernibility.
For example, let $\mathbf{1}$ be the poset whose underlying set has one element, and let 2 be the poset whose underlying set has two elements a and b for which $a \leq b$ and $b \leq a$.

Outline

(1) Motivation

2 Lower equivalence principles in univalent foundations

3 First-order logic with dependent sorts (FOLDS) for lower structures
(4) FOLDS categories

Goal

Our goal

To define a large class of (higher) univalent structures and a notion of equivalence between them validating a univalence principle. This then automatically validates a structure identity principle.

Using indiscernibility for the notions of

- univalent
- equivalence

Joint work with Ahrens, Shulman, Tsementzis. arXiv:2004.06572

First-order logic with dependent sorts (Makkai)

Inverse category

An inverse category is a strict category \mathscr{I} and a function $\rho: \mathscr{I} \rightarrow$ Nat $^{\mathrm{Op}}$ whose fibers are discrete.

The height of an inverse category (\mathscr{I}, ρ) is the maximum value of ρ.

Signatures

Signatures are inverse categories of finite height.
M
$\vdots \downarrow \downarrow$
O
$\mathscr{L}_{\text {Magma }}$

$\mathscr{L}_{\text {Proset }}$

$\mathscr{L}_{\text {Group }}$

Structures

An \mathscr{L}-structure is a Reedy-fibrant functor from \mathscr{L} into \mathscr{U}.
$\mathscr{L}_{\text {Proset }}$-structures
An $\mathscr{L}_{\text {Proset }}$-structure S is

1. A type SO,
2. A type $S A(x, y)$ for every $x, y: O$ (meaning $x \leq y$)

Structures

An \mathscr{L}-structure is a Reedy-fibrant functor from \mathscr{L} into \mathscr{U}.

$\mathscr{L}_{\text {Proset }}-$-structures

An $\mathscr{L}_{\text {Proset }}$-structure S is

1. A type SO,
2. A type $S A(x, y)$ for every $x, y: O$ (meaning $x \leq y$)

$$
t_{0}^{A} L
$$

$\mathscr{L}_{\text {Magma-structures }}$

An $\mathscr{L}_{\text {Magma }}$-structure S is

1. A type SO,
2. A type $\operatorname{SM}(x, y, z)$ for every $x, y, z: O$ (meaning z is the product of x and y)

We can impose axioms on these structures.

Indiscernibilities

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms p, q : SO consists of

- $\prod_{x: S O} S A(p, x) \cong S A(q, x)$
- $\prod_{x: S O} S A(x, p) \cong S A(x, q)$
- $S A(p, p) \cong S A(q, q)$

Indiscernibilities

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms $p, q: S O$ consists of

- $\prod_{x: S O} S A(p, x) \cong S A(q, x)$
- $\prod_{x: S O} S A(x, p) \cong S A(x, q)$
- $S A(p, p) \cong S A(q, q)$

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Magma }}$-structures

An indiscernibility between two terms $m, n: S O$ consists of

- $\prod_{x y: S O} S M(m, x, y) \cong S M(n, x, y)$
- $\prod_{x y: S O} S M(x, m, y) \cong S M(x, n, y)$
- $\prod_{x, y: S O} S M(x, y, m) \cong S M(x, y, n)$
- $\prod_{x: S O} S M(x, m, m) \cong S M(x, n, n)$
- $\prod_{x: S O} S M(m, x, m) \cong S M(n, x, n)$
- $\prod_{x: S O} S M(m, m, x) \cong S M(n, n, x)$
- $\operatorname{SM}(m, m, m) \cong S M(n, n, n)$

Indiscernibilities at the top-level

Indiscernibilities between A-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms $a, b: S A(p, q)$ consists of
so all terms of $a, b: S A(p, q)$ are (trivially) indiscernible.

Definition (univalent structure)

A structure M of a signature \mathscr{L} is univalent if the type of indiscernibilities between any two terms of any one sort is equivalent to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions, and all of the next-level sorts are sets.

Univalent structures

Proposition

A $\mathscr{L}_{\text {Proset }}$-structure S is univalent when each $p \leq q$ is a proposition and $(p=q) \rightarrow(p \leq q) \times(q \leq p)$ is an equivalence - in other words, when A is a poset.

Proposition

A $\mathscr{L}_{\text {Magma }}$-structure S is univalent when each $S M(m, n, p)$ is a proposition and
$(m=n) \rightarrow \prod_{x, y: M}(m x=n x) \times(x m=x n) \times((x y=m) \leftrightarrow(x y=n))$ is an equivalence.

Proposition

A topological space T is univalent when
$(x=y) \rightarrow \prod_{U \text { open in } T}(x \in U \leftrightarrow y \in U)$ is an equivalence - in other words, T is a T_{o} space.

Outline

(1) Motivation

(2) Lower equivalence principles in univalent foundations
(3) First-order logic with dependent sorts (FOLDS) for lower structures
(4) FOLDS categories

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C} O: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C O} \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C T}: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C T}: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow E\left(h, h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Univalent $\mathscr{L}_{\text {cat }}$-structures

- Every two elements of $\mathscr{C} I_{x}(f), \mathscr{C} E_{x, y}(f, g)$, or $\mathscr{C} T_{x, y, z}(f, g, h)$ are indiscernible
- so each of these types should be a proposition.
- The axioms making E a congruence for T and I make $\mathscr{C} E(f, g)$ the type of indisceribilities between $f, g: \mathscr{C} A(x, y)$
- so we should have $(f=g)=\mathscr{C} E(f, g)$, making each $\mathscr{C} A(x, y)$ a set.
- The indiscernibilities between $a, b: \mathscr{C} O$ consist of

1. $\phi_{x}: \mathscr{C} A(x, a) \simeq \mathscr{C} A(x, b)$ for each $x: \mathscr{C} O$
2. $\phi_{\bullet z}: \mathscr{C} A(a, z) \simeq \mathscr{C} A(b, z)$ for each $z: \mathscr{C} O$
3. $\phi_{. .}: \mathscr{C} A(a, a) \simeq \mathscr{C} A(b, b)$
4. The following for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
& T_{x, y, a}(f, g, h) \leftrightarrow T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{x, a, z}(f, g, h) \leftrightarrow T_{x, b, z}\left(\phi_{x \bullet}(f), \phi_{\bullet z}(g), h\right) \\
& T_{a, z, w}(f, g, h) \leftrightarrow T_{b, z, w}\left(\phi_{\bullet z}(f), g, \phi_{\bullet w}(h)\right) \\
& T_{x, a, a}(f, g, h) \leftrightarrow T_{x, b, b}\left(\phi_{x \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{a, x, a}(f, g, h) \leftrightarrow T_{b, x, b}\left(\phi_{\bullet x}(f), \phi_{x \bullet}(g), \phi_{\bullet \bullet}(h)\right) \\
& T_{a, a, x}(f, g, h) \leftrightarrow T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet x}(g), \phi_{\bullet x}(h)\right) \\
& T_{a, a, a}(f, g, h) \leftrightarrow T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

Univalent $\mathscr{L}_{\text {cat }}$-structures continued

Proposition

The type of indiscernibilities between $a, b: \mathscr{C} O$ is equivalent to $a \cong b$.

Proof.

The isomorphisms $\phi_{x \bullet}: \mathscr{C} A(x, a) \cong \mathscr{C} A(x, b)$ are natural by

$$
\mathscr{C} T_{x, y, a}(f, g, h) \leftrightarrow \mathscr{C} T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right)
$$

(saying $\phi_{y \bullet}(g) \circ f=\phi_{x}(g \circ f)$). The rest of the data is redundent.
Thus, in a univalent $\mathscr{L}_{\text {cat }}$-structure, $(a=b) \simeq(a \cong b)$.

Theorem

Univalent $\mathscr{L}_{\text {cat }}$-structures are equivalent to the univalent categories of Ahrens-Kapulkin-Shulman.

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- FA : $\mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+ \text { E }}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$

- $F T: \mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- FE: $\mathscr{C} E(f, g) \rightarrow \mathscr{D E}(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$

- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \longleftrightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+ \text { E }}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- FA : $\mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+ \text { E }}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D O}$
- $F A: \mathscr{C} A(x, y) \cong \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Equivalences in general

Definition (equivalence)

An equivalence $M \simeq N$ between two \mathscr{L}-structures is a very split-surjective morphism $M \rightarrow N$.

Theorem

Given two univalent \mathscr{L}-structures M and N,

$$
(M=N) \simeq(M \simeq N) .
$$

Theorem

For a signature $L: \operatorname{Sig}(n)$, the type of univalent L-structures is of h-level $n+1$.

Example: magmas

Equivalences of univalent magmas

An equivalence of magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \rightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \rightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \longleftrightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O$: $N O \cong P O$
- $F M: N M(x, y, z) \longleftrightarrow P M(F x, F y, F z)$

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

The paper includes examples of

- t-categories,
- presheaves,
- profunctors,
- semi-displayed categories,
- bicategories,
- ...

Thank you!

