Generalizing the equivalence principle in Univalent Foundations to higher categorical structures

Paige Randall North

27 September 2021

Outline

(1) Motivation \& review

2 First-order logic with dependent sorts (FOLDS) for lower structures
(3) FOLDS categories

Last time

Univalence principle

For a specific type T and suitable notion of equivalence \simeq between terms of T, the canonical map

$$
x=_{T} y \rightarrow x \simeq y
$$

is an equivalence.
The Univalent Foundations, the univalence axiom is

- an axiom for $T:=U$ and $\simeq:=$ equivalence of types (V)
- a theorem for $T:=$ Prop and $\simeq:=$ logical equivalence (V)
- a theorem for $T:=$ Set and $\simeq:=$ bijection (V)
- a theorem for $T:=$ Grp,Mon,Rng,Proset and $\simeq:=$ homomorphisms (CD)
- a theorem for $T:=$ UCat and $\simeq:=$ categorical equivalence (AKS)
- a theorem for bicategories, dagger categories, monoidal categories, ...?

Categories

Univalence principle for categories

$$
\mathscr{C}=_{U C a t} \mathscr{D} \rightarrow \mathscr{C} \simeq \mathscr{D}
$$

is an equivalence.

Definition

UCat is the type of univalent categories: those categories \mathscr{C} for which

$$
\left(x=O_{O b \mathscr{C}} y\right)={ }_{U}(x \cong y)
$$

for every $x, y \in O b \mathscr{C}$.

Generlize isomorphic \rightarrow indiscernible

Two objects x, y are isomorphic iff they are 'indiscernible' via category-theoretic operations

Magmas

Magmas

A magma is a set M and a binary operation $M \times M \rightarrow M$.
There are two notions of 'sameness' for elements m, n of a magma:
(e) Equality: $m={ }_{M} n$
(i) Indiscernibility:

$$
\prod_{x, y: M}(m x=n x) \times(x m=x n) \times((x y=m) \leftrightarrow(x y=n))
$$

This produces two notions of equivalence of magmas:
(e) $M \cong{ }_{e} N$
(i) $M \cong{ }_{i} N$

Coquand-Danielsson tells us that $\left(M={ }_{M o n} N\right) \simeq\left(M \cong{ }_{e} N\right)$.
By requiring M, N to be univalent (i.e. $e \simeq i$), we then find

$$
\left(M=_{M o n} N\right) \simeq\left(M \cong_{i} N\right) .
$$

Goal

Our goal

To define a large class of (higher) univalent structures and a notion of equivalence between them validating a univalence principle. This then automatically validates a structure identity principle.

Using indiscernibility for the notions of

- univalent
- equivalence

Joint work with Ahrens, Shulman, Tsementzis. arXiv:2102.06275

Outline

(1) Motivation \& review

2 First-order logic with dependent sorts (FOLDS) for lower structures

(3) FOLDS categories

First-order logic with dependent sorts (Makkai)

Inverse category

An inverse category is a strict category \mathscr{I} and a function $\rho: \mathscr{I} \rightarrow \mathrm{Nat}^{\mathrm{Op}}$ whose fibers are discrete.

The height of an inverse category (\mathscr{I}, ρ) is the maximum value of ρ.

Signatures

Signatures are inverse categories of finite height.
M
$\vdots \downarrow \downarrow$
O
$\mathscr{L}_{\text {Magma }}$

$\mathscr{L}_{\text {Proset }}$

$\mathscr{L}_{\text {Group }}$

Structures

$\mathscr{L}_{\text {Proset }}$-structures

An $\mathscr{L}_{\text {Proset }}$-structure S is

1. A type $S O$,
2. A type $S A(x, y)$ for every $x, y: O$ (meaning $x \leq y$)

Structures

$\mathscr{L}_{\text {Proset }}$-structures

An $\mathscr{L}_{\text {Proset }}$-structure S is

1. A type SO,
2. A type $S A(x, y)$ for every $x, y: O$ (meaning $x \leq y$)

$\mathscr{L}_{\text {Magma-structures }}$

An $\mathscr{L}_{\text {Magma }}$-structure S is

1. A type SO,
2. A type $\operatorname{SM}(x, y, z)$ for every $x, y, z: O$ (meaning z is the product of x and y)

$$
\underset{O}{M}
$$

We can impose axioms on these structures.

Indiscernibilities

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms p, q : SO consists of

- $\prod_{x: S O} S A(p, x) \cong S A(q, x)$
- $\prod_{x: S O} S A(x, p) \cong S A(x, q)$
- $S A(p, p) \cong S A(q, q)$

Indiscernibilities

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms $p, q: S O$ consists of

- $\prod_{x: S O} S A(p, x) \cong S A(q, x)$
- $\prod_{x: S O} S A(x, p) \cong S A(x, q)$
- $S A(p, p) \cong S A(q, q)$

Indiscernibilities between O-elements of $\mathscr{L}_{\text {Magma }}$-structures

An indiscernibility between two terms $m, n: S O$ consists of

- $\prod_{x y: S O} S M(m, x, y) \cong S M(n, x, y)$
- $\prod_{x y: S O} S M(x, m, y) \cong S M(x, n, y)$
- $\prod_{x, y: S O} S M(x, y, m) \cong S M(x, y, n)$
- $\prod_{x: S O} S M(x, m, m) \cong S M(x, n, n)$
- $\prod_{x: S O} S M(m, x, m) \cong S M(n, x, n)$
- $\prod_{x: S O} S M(m, m, x) \cong S M(n, n, x)$
- $\operatorname{SM}(m, m, m) \cong S M(n, n, n)$

Indiscernibilities at the top-level

Indiscernibilities between A-elements of $\mathscr{L}_{\text {Proset }}$-structures

An indiscernibility between two terms $a, b: S A(p, q)$ consists of
so all terms of $a, b: S A(p, q)$ are (trivially) indiscernible.

Definition (univalent structure)

A structure M of a signature \mathscr{L} is univalent if the type of indiscernibilities between any two terms of any one sort is equivalent to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions, and all of the next-level sorts are sets.

Univalent structures

Proposition

A $\mathscr{L}_{\text {Proset }}$-structure S is univalent when each $p \leq q$ is a proposition and $(p=q) \rightarrow(p \leq q) \times(q \leq p)$ is an equivalence - in other words, when A is a poset.

Proposition

A $\mathscr{L}_{\text {Magma }}$-structure S is univalent when each $S M(m, n, p)$ is a proposition and
$(m=n) \rightarrow \prod_{x, y: M}(m x=n x) \times(x m=x n) \times((x y=m) \leftrightarrow(x y=n))$ is an equivalence.

Proposition

A topological space T is univalent when
$(x=y) \rightarrow \prod_{U \text { open in } T}(x \in U \leftrightarrow y \in U)$ is an equivalence - in other words, T is a T_{o} space.

Outline

1) Motivation \& review

2 First-order logic with dependent sorts (FOLDS) for lower structures
(3) FOLDS categories

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C} O: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C O} \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C T}: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

$\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C I}: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow E\left(h, h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Univalent $\mathscr{L}_{\text {cat }}$-structures

- Every two elements of $\mathscr{C} I_{x}(f), \mathscr{C} E_{x, y}(f, g)$, or $\mathscr{C} T_{x, y, z}(f, g, h)$ are indiscernible
- so each of these types should be a proposition.
- The axioms making E a congruence for T and I make $\mathscr{C} E(f, g)$ the type of indisceribilities between $f, g: \mathscr{C} A(x, y)$
- so we should have $(f=g)=\mathscr{C} E(f, g)$, making each $\mathscr{C} A(x, y)$ a set.
- The indiscernibilities between $a, b: \mathscr{C} O$ consist of

1. $\phi_{x}: \mathscr{C} A(x, a) \simeq \mathscr{C} A(x, b)$ for each $x: \mathscr{C} O$
2. $\phi_{\bullet z}: \mathscr{C} A(a, z) \simeq \mathscr{C} A(b, z)$ for each $z: \mathscr{C} O$
3. $\phi_{. .}: \mathscr{C} A(a, a) \simeq \mathscr{C} A(b, b)$
4. The following for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
& T_{x_{2}, a}(f, g, h) \leftrightarrow T_{x_{x}, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{x, a, z}(f, g, h) \leftrightarrow T_{x, b, z}\left(\phi_{x \bullet}(f), \phi_{\bullet z}(g), h\right) \\
& T_{a, z, w}(f, g, h) \leftrightarrow T_{b, z, w}\left(\phi_{\bullet z}(f), g, \phi_{\bullet w}(h)\right) \\
& T_{x, a, a}(f, g, h) \leftrightarrow T_{x, b, b}\left(\phi_{x \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{x \bullet}(h)\right) \\
& T_{a, x, a}(f, g, h) \leftrightarrow T_{b, x, b}\left(\phi_{\bullet x}(f), \phi_{x \bullet}(g), \phi_{\bullet \bullet}(h)\right) \\
& T_{a, a, x}(f, g, h) \leftrightarrow T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet 0}(g), \phi_{\bullet x}(h)\right) \\
& T_{a, a, a}(f, g, h) \leftrightarrow T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

Univalent $\mathscr{L}_{\text {cat }}$-structures continued

Proposition

The type of indiscernibilities between $a, b: \mathscr{C} O$ is equivalent to $a \cong b$.

Proof.

The isomorphisms $\phi_{x \bullet}: \mathscr{C} A(x, a) \cong \mathscr{C} A(x, b)$ are natural by

$$
\mathscr{C} T_{x, y, a}(f, g, h) \leftrightarrow \mathscr{C} T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right)
$$

(saying $\phi_{y \bullet}(g) \circ f=\phi_{x}(g \circ f)$). The rest of the data is redundent.
Thus, in a univalent $\mathscr{L}_{\text {cat }}$-structure, $(a=b) \simeq(a \cong b)$.

Theorem

Univalent $\mathscr{L}_{\text {cat }}$-structures are equivalent to the univalent categories of Ahrens-Kapulkin-Shulman.

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- FA : $\mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- FA : $\mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$

- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \longleftrightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+ \text { E }}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D} O$
- FA : $\mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Categorical equivalences

Theorem (univalence for univalent categories)
 (Ahrens-Kapulkin-Shulman)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence arises as a very surjective morphism.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of univalent $\mathscr{L}_{\text {cat }+ \text { E }}$-structures consists of surjections

- FO: $\mathscr{C O} \rightarrow \mathscr{D O}$
- $F A: \mathscr{C} A(x, y) \cong \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- $F T: \mathscr{C} T(f, g, h) \leftrightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E:(f=g) \leftrightarrow(F f=F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \longleftrightarrow \mathscr{D} I(F f)$ for all $f: \mathscr{C} A(x, x)$

Equivalences in general

Definition (equivalence)

An equivalence $M \simeq N$ between two \mathscr{L}-structures is a very split-surjective morphism $M \rightarrow N$.

Theorem

Given two univalent \mathscr{L}-structures M and N,

$$
(M=N) \simeq(M \simeq N) .
$$

Theorem

For a signature $L: \operatorname{Sig}(n)$, the type of univalent L-structures is of h-level $n+1$.

Example: magmas

Equivalences of univalent magmas

An equivalence of magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \rightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \rightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O: N O \rightarrow P O$
- $F M: N M(x, y, z) \longleftrightarrow P M(F x, F y, F z)$

Example: magmas

Equivalences of univalent magmas

An equivalence of univalent magmas N, P consists of surjections

- $F O$: $N O \cong P O$
- $F M: N M(x, y, z) \longleftrightarrow P M(F x, F y, F z)$

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

The paper includes examples of

- t-categories,
- presheaves,
- profunctors,
- semi-displayed categories,
- bicategories,
- ...

Thank you!

