
1/21

Generalizing the equivalence principle in Univalent
Foundations to higher categorical structures

Paige Randall North

27 September 2021



2/21

Outline

1 Motivation & review

2 First-order logic with dependent sorts (FOLDS) for lower structures

3 FOLDS categories



3/21

Last time
Univalence principle
For a specific type T and suitable notion of equivalence ' between
terms of T, the canonical map

x =T y→ x ' y

is an equivalence.

The Univalent Foundations, the univalence axiom is
• an axiom for T := U and ' := equivalence of types (V)
• a theorem for T := Prop and ' := logical equivalence (V)
• a theorem for T := Set and ' := bijection (V)
• a theorem for T := Grp,Mon,Rng,Proset and ' :=
homomorphisms (CD)

• a theorem for T := UCat and ' := categorical equivalence (AKS)
• a theorem for bicategories, dagger categories, monoidal
categories, ...?
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Categories

Univalence principle for categories

C =UCat D →C 'D

is an equivalence.

Definition
UCat is the type of univalent categories: those categories C for which

(x =ObC y) =U (x ∼= y)

for every x,y ∈ ObC .

Generlize isomorphic→ indiscernible
Two objects x,y are isomorphic iff they are ‘indiscernible’ via
category-theoretic operations
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Magmas

Magmas
A magma is a set M and a binary operation M×M→M.

There are two notions of ‘sameness’ for elements m,n of a magma:
(e) Equality: m=M n
(i) Indiscernibility:

∏

x,y:M(mx = nx)× (xm= xn)×
�

(xy =m)↔ (xy = n)
�

This produces two notions of equivalence of magmas:
(e) M ∼=e N
(i) M ∼=i N
Coquand-Danielsson tells us that (M =Mon N)' (M ∼=e N).
By requiring M,N to be univalent (i.e. e' i), we then find

(M =Mon N)' (M ∼=i N).
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Goal

Our goal
To define a large class of (higher) univalent structures and a notion of
equivalence between them validating a univalence principle. This then
automatically validates a structure identity principle.

Using indiscernibility for the notions of
• univalent
• equivalence

Joint work with Ahrens, Shulman, Tsementzis. arXiv:2102.06275

http://arxiv.org/abs/2102.06275
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First-order logic with dependent sorts (Makkai)

Inverse category
An inverse category is a strict category I and a function ρ : I → Natop

whose fibers are discrete.
The height of an inverse category (I ,ρ) is the maximum value of ρ.

Signatures
Signatures are inverse categories of finite height.

M A I E M

O O O
LMagma LProset LGroup
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Structures

LProset-structures

An LProset-structure S is
1. A type SO,
2. A type SA(x,y) for every x,y : O (meaning x ≤ y)

A

O

LMagma-structures

An LMagma-structure S is
1. A type SO,
2. A type SM(x,y, z) for every x,y, z : O (meaning z is

the product of x and y)

M

O

We can impose axioms on these structures.
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Indiscernibilities

Indiscernibilities between O-elements of LProset-structures
An indiscernibility between two terms p,q : SO consists of
•
∏

x:SO SA(p,x)∼= SA(q,x)
•
∏

x:SO SA(x,p)∼= SA(x,q)
• SA(p,p)∼= SA(q,q)

Indiscernibilities between O-elements of LMagma-structures
An indiscernibility between two terms m,n : SO consists of

•
∏

x,y:SO SM(m,x,y)∼= SM(n,x,y)

•
∏

x,y:SO SM(x,m,y)∼= SM(x,n,y)

•
∏

x,y:SO SM(x,y,m)∼= SM(x,y,n)

•
∏

x:SO SM(x,m,m)∼= SM(x,n,n)

•
∏

x:SO SM(m,x,m)∼= SM(n,x,n)

•
∏

x:SO SM(m,m,x)∼= SM(n,n,x)

• SM(m,m,m)∼= SM(n,n,n)
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Indiscernibilities at the top-level

Indiscernibilities between A-elements of LProset-structures
An indiscernibility between two terms a,b : SA(p,q) consists of
• -

so all terms of a,b : SA(p,q) are (trivially) indiscernible.

Definition (univalent structure)
A structure M of a signature L is univalent if the type of
indiscernibilities between any two terms of any one sort is equivalent
to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions,
and all of the next-level sorts are sets.
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Univalent structures

Proposition
A LProset-structure S is univalent when each p≤ q is a proposition and
(p= q)→ (p≤ q)× (q≤ p) is an equivalence - in other words, when A
is a poset.

Proposition
A LMagma-structure S is univalent when each SM(m,n,p) is a
proposition and
(m= n)→

∏

x,y:M(mx = nx)× (xm= xn)×
�

(xy =m)↔ (xy = n)
�

is
an equivalence.

Proposition
A topological space T is univalent when
(x = y)→

∏

U open in T(x ∈ U↔ y ∈ U) is an equivalence – in other
words, T is a T0 space.
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Lcat-structures
We can define the data of a category C to be
• A type CO :U
• A family CA :CO×CO→U
• A family C I :

∏

(x:CO)CA(x,x)→U
• A family C T :

∏

(x,y,z:CO)CA(x,y)→
CA(y, z)→CA(x, z)→U

• A family
C E :

∏

(x,y:CO)CA(x,y)→CA(x,y)→U

T I

A

O

We want to add axioms such as

∀(x,y, z : O).∀(f : A(x,y)).∀(g : A(y, z)).∀(h,h′ : A(x, z)).
T(x,y, z, f ,g,h)→ T(x,y, z, f ,g,h′)→ (h= h′)

(composites are unique), so we add an equality ‘predicate’.
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Univalent Lcat-structures
• Every two elements of C Ix(f), C Ex,y(f ,g), or C Tx,y,z(f ,g,h) are
indiscernible
• so each of these types should be a proposition.

• The axioms making E a congruence for T and I make C E(f ,g) the
type of indisceribilities between f ,g :CA(x,y)
• so we should have (f = g) =C E(f ,g), making each CA(x,y) a set.

• The indiscernibilities between a,b :CO consist of
1. φx• :CA(x,a)'CA(x,b) for each x :CO
2. φ•z :CA(a, z)'CA(b, z) for each z :CO
3. φ•• :CA(a,a)'CA(b,b)
4. The following for all appropriate w,x,y, z, f ,g,h:

Tx,y,a(f ,g,h)↔ Tx,y,b(f ,φy•(g),φx•(h)) Ia,a(f)↔ Ib,b(φ••(f))

Tx,a,z(f ,g,h)↔ Tx,b,z(φx•(f),φ•z(g),h) Ex,a(f ,g)↔ Ex,b(φx•(f),φx•(g))

Ta,z,w(f ,g,h)↔ Tb,z,w(φ•z(f),g,φ•w(h)) Ea,x(f ,g)↔ Eb,x(φ•x(f),φ•x(g))

Tx,a,a(f ,g,h)↔ Tx,b,b(φx•(f),φ••(g),φx•(h)) Ea,a(f ,g)↔ Eb,b(φ••(f),φ••(g))

Ta,x,a(f ,g,h)↔ Tb,x,b(φ•x(f),φx•(g),φ••(h))

Ta,a,x(f ,g,h)↔ Tb,b,x(φ••(f),φ•x(g),φ•x(h))

Ta,a,a(f ,g,h)↔ Tb,b,b(φ••(f),φ••(g),φ••(h))
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Univalent Lcat-structures continued

Proposition
The type of indiscernibilities between a,b :CO is equivalent to a∼= b.

Proof.
The isomorphisms φx• :CA(x,a)∼=CA(x,b) are natural by

C Tx,y,a(f ,g,h)↔C Tx,y,b(f ,φy•(g),φx•(h))

(saying φy•(g) ◦ f = φx•(g ◦ f)). The rest of the data is redundent.

Thus, in a univalent Lcat-structure, (a= b)' (a∼= b).

Theorem
Univalent Lcat-structures are equivalent to the univalent categories of
Ahrens-Kapulkin-Shulman.
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Categorical equivalences
Theorem (univalence for univalent categories)
(Ahrens-Kapulkin-Shulman)
Given univalent categories C ,D,

(C = D)' (C ' D)

A categorial equivalence arises as a very surjective morphism.

A very surjective morphism or equivalence F :C ' D of
Lcat+e-structures consists of surjections
• FO :CO� DO
• FA :CA(x,y)� DA(Fx,Fy) for every x,y :CO
• FT :C T(f ,g,h)� DT(Ff ,Fg,Fh) for all

f :CA(x,y),g :CA(y, z),h :CA(x, z)
• FE :C E(f ,g)� DE(Ff ,Fg) for all f ,g :CA(x,y)
• FI :C I(f)� DI(Ff) for all f :CA(x,x)
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Equivalences in general

Definition (equivalence)
An equivalence M ' N between two L -structures is a very
split-surjective morphism M→ N.

Theorem
Given two univalent L -structures M and N,

(M = N)' (M ' N).

Theorem
For a signature L : Sig(n), the type of univalent L-structures is of h-level
n+ 1.
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Example: magmas

Equivalences of univalent magmas
An equivalence of magmas N,P consists of surjections
• FO : NO� PO
• FM : NM(x,y, z)� PM(Fx,Fy,Fz)
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Summary

For every signature L , we have
• a notion of indiscernibility within each sort,
• a notion of univalent structures,
• a notion of equivalence,
• a univalence theorem,
• and thus a (higher) structure identity principle.

The paper includes examples of
• †-categories,
• presheaves,
• profunctors,
• semi-displayed categories,
• bicategories,
• ...
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Thank you!
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