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Display map categories1

Definition

A display map category pC,Dq consists of a category C with a terminal
object and a class D (the display maps) of morphisms of C such that

1. every pullback of every display map exists,

2. every pullback of every display map is a display map, and

3. every map to a terminal object is a display map.

Every display map category is a comprehension category

§ The category of contexts is C.

§ The category of types T is the full subcategory of CÑ spanned by
those objects which are in D.

§ Comprehension T Ñ CÑ is just the inclusion functor.

1Cf. Taylor’s classes of display maps, Shulman’s type-theoretic fibration categories,
and Joyal’s clans and tribes
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Display map categories

§ Objects of the category represent contexts.
§ Display maps p : T Ñ Γ represent types Γ $ T .

§ We’re taking a fibrational perspective.
§ Given a point γ : ˚ Ñ Γ (which represents a term γ : Γ), the fiber

p´1pγq represents the type T pγq.

§ Conditions 1 and 2: The substitution of
a map of contexts s : ∆ Ñ Γ into p is
represented by taking the pullback:

s˚T T

∆ Γ

s˚p p

s

§ Condition 3: The terminal object represents the empty context, so
contexts are the same as types in the empty context.

§ Sections t of p represent terms Γ $ t : T .
§ In the empty context, terms of a type T are just points ˚ Ñ T .
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Not a true model of HoTT

§ This generally does not form a split comprehension category.

§ But there are strictification theorems that turn any comprehension
category into an equivalent split one.

§ In this talk, I’m appealing to the strictification theorem of
Lumsdaine-Warren (2015) which also turns the following type
constructors, which I’ll give as only weakly stable under
substitution/pullback, to their strictly stable counterparts.
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Type constructors in display map categories

Consider two display maps in a display map category pC,Dq:

T

∆ Γ

p Σsp

s

Σ-types2

The Σ-type of p and s is Σsp :“ s ˝ p. Then pC,Dq models Σ-types if D
is closed under composition.

2strong sums in the sense of Jacobs ’90
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Type constructors in display map categories

Consider two display maps in a display map category pC,Dq:

T

∆ Γ

p Πsp

s

Π-types3

A Π-type of p and s is a display map Πsp with codomain Γ and the
universal property

C{Γpg ,Πspq – C{∆ps˚g , pq

for every g P C{Γ. Then pC,Dq models Π-types if there is a Π-type Πsp
for every composable s, p.

3products in the sense of Jacobs ’90
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Type constructors in display map categories

Suppose that the ambient display map category pC,Dq models Σ-types.
Consider a display map p : T Ñ Γ.

Id-types4

An Id-type of p consists of

§ a factorization of the diagonal
p Ñ p ˆ p in the slice C{Γ

such that

§ εppq is a display map (which
makes Idppq a display map),

§ every pullback of rppq as shown
here has the left lifting property
against D.

T ιppq T ˆΓ T

Γ

rppq

p
Idppq

εppq

pˆp

s˚ιppq //

��

ιppq

πi εppq

��
∆ //

s˚rppq ;;

Γ

rppq ==

∆
s // Γ

pC,Dq models Id-types if there is an Id-type of every display map.

4Paulin-Mohring ’93, and weakly stable in the sense of Lumsdaine-Warren ’15
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The Id-type5

§ The Id-formation rule

Γ $ T

Γ, t : T , t 1 : T $ IdT pt, t
1q

requires that there is a display map εppq : Idppq Ñ p ˆ p.

§ The Id-introduction rule

Γ $ T

Γ, t : T $ rptq : IdT pt, tq

requires that there is a morphism rppq : p Ñ Idppq.

These two rules require that there is a factorization of the diagonal
through a display map. We think of Idppq as a path object for p.

p
rppq
ÝÝÑ Idppq

εppq
ÝÝÑ p ˆ p

5Awodey-Warren ’08



12/32

The Id-type
§ The Martin-Löf Id-elimination rule

Γ, t : T , t 1 : T , q : IdT pt, t
1q $ E pt, t 1, qq

Γ, t : T $ iptq : E pt, t, rptqq

Γ, t : T , t 1 : T , q : IdT pt, t
1q $ jpi , t, t 1, qq : E pt, t 1, qq

requires that there is a lift in the following diagram in C{Γ making
the bottom triangle commute.

p e

Idppq Idppq

rppq

i

j

§ The Martin-Löf Id-computation rule

Γ, t : T , t 1 : T , q : IdT pt, t
1q $ E pt, t 1, qq Γ $ i : E pt, t, rptqq

Γ, t : T $ jpi , t, t, rptqq “ iptq : E pt, t, rptqq

requires that the top triangle commute.



12/32

The Id-type
§ The Martin-Löf Id-elimination rule

Γ, t : T , t 1 : T , q : IdT pt, t
1q $ E pt, t 1, qq

Γ, t : T $ iptq : E pt, t, rptqq

Γ, t : T , t 1 : T , q : IdT pt, t
1q $ jpi , t, t 1, qq : E pt, t 1, qq

requires that there is a lift in the following diagram in C{Γ making
the bottom triangle commute.

p e

Idppq Idppq

rppq

i

j
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The Id-type

§ If we have such lifts, then every rppq has the left lifting property
against every display map.

p x

Idppq y

rppq

α

d
j

β

§ The Paulin-Mohring variant asks that this property of rppq is stable
under certain pullbacks.
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Weak factorization systems

A weak factorization system on a category C is a pair pL,Rq of classes of
morphisms of C such that

§ every morphism of C factors into a morphism of L followed by a
morphism of R,

§ L is exactly the class of morphisms with the left lifting property
against R, and

§ R is exactly the class of morphisms with the right lifting property
against L.

NB: A model category contains two weak factorization systems:
pC,W X Fq and pC XW,Fq.
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Weak factorization systems6

§ The Paulin-Mohring variant is exactly what is needed to generate a
weak factorization system.

Consider a category of display maps pC,Dq which models Σ-, Id-types.

§ Thinking of the Id-types as path types, we can form the mapping
path space factorization that takes any morphism f : X Ñ Y in C to

X
1ˆprpY q˝f q
ÝÝÝÝÝÝÝÑ X ˆY IdpY q

πY ˝pfˆ1q˚εpY q
ÝÝÝÝÝÝÝÝÝÝÑ Y

where X ˆY IdpY q is the pullback

X ˆY IdpY q IdpY q

X ˆ Y Y ˆ Y

A ε

fˆ1

§ The right map is in D since it is a combination of pullbacks and
compositions of display maps.

6Gambino-Garner ’08
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Weak factorization systems7

§ The left map X
1ˆprpY q˝f q
ÝÝÝÝÝÝÝÑ X ˆY IdpY q has the left lifting property

against D because it can be obtained as the pullback.

X ˆY IdpY q //

��

IdpY q

π0εpY q

��

X //

f ˚rppq
99

Y

rpY q
<<

X
f // Y

§ Our factorization takes a map to one in mD followed by one of D.

§ By formal nonsense, this produces a weak factorization system
pmD,Dq where D is the retract closure of D.

7Gambino-Garner ’08
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Type-theoretic weak factorization systems8

§ Every display map category pC,Dq modeling Σ- and Id-types
produces a weak factorization system pmD,Dq on C.

§ Which weak factorization systems harbor models of Σ- and Id-types?

§ First, if pC,Dq is a display map category modeling Σ- and Id-types,
then pC,Dq is a display map category modeling Σ- and Id-types
(when C is Cauchy complete).

§ Every object in such a weak factorization system must be fibrant
(every map to the terminal object must be in the right class).

X X

X ˆ Idp˚q ˚

λp!q

ρp!q

πX

8North ’17
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Type-theoretic weak factorization systems

Remember: A display map category (C,D) models Π-types if for every
display map p,

1. pullback along p has a partial right adjoint Πp defined on display
maps

2. such that Πp preserves D.

But 2. is equivalent to

3. pullback along p preserves mD.

Definition

A weak factorization system pL,Rq satisfies the Frobenius condition if L
is stable under pullback along R.

Say that pL,Rq is type theoretic if (1) all objects are fibrant and (2)
it satisfies the Frobenius condition.
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Type-theoretic weak factorization systems

There is an equivalence between the category of display map categories
modeling Σ- and Id-types and the category of type theoretic weak
factorization systems on a finitely complete category.

Theorem

Consider a weak factorization system pL,Rq on a finitely complete
category C.
pC,Rq is a display map category modeling Σ- and Id-types if and only

if (1) every object is fibrant and (2) it satisfies the Frobenius condition.
If for every map r in R, the pullback functor r˚ has a partial right

adjoint defined on R, then pC,Rq models Π-types.

Given a type theoretic weak factorization system, you recover a model of
Id-types by just factoring the diagonal.
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Type-theoretic weak factorization systems

Examples from Cisinski model categories:

Suppose you have a model structure pC,W,Fq on a finitely complete
category M.

§ You can always restrict the wfs pC XW,Fq to a wfs
pCF XWF ,RF q on the full subcategory MF of fibrant objects.

§ MF is closed under pullbacks along morphisms of RF .

§ So pMF ,RF q is a display map category modeling Σ-types.

§ WF is always stable under pullback in MF .

§ In Cisinski model categories9, C is the class of monos, and so is
always stable under pullback.

§ So pCF XWF ,RF q is Frobenius, and pMF ,RF q models Id-types.

§ Cisinski model categories are locally cartesian closed, so pMF ,RF q
models Π-types.

9Cisinski ’06
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Type-theoretic weak factorization systems

Cisinski model categories:

§ Quillen model structure on sSet (fibrant objects are Kan complexes)

§ Joyal model structure on sSet (fibrant objects are quasicategories)

§ Cubical sets
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Type-theoretic weak factorization systems

Examples from internal reflexive graphs/pseudo-relations:10

Suppose you have, for every object X of a category C, a reflexive graph
on X :

X
r
ÝÑ ΓX

ε
ÝÑ X ˆ X

It is

§ strictly transitive when there is a composition µ : ΓX ˆX ΓX Ñ ΓX
making this into an internal category,

§ strictly connected when there is connection δ : ΓX Ñ Γ2X and a
strength τ : X ˆ Γp˚q Ñ ΓpX q making certain diagrams commute,

§ strictly symmetric when there is an involution ι : ΓX Ñ ΓX fixing r
and switching the endpoints.

10van den Berg-Garner ’12, North ’17
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Type-theoretic weak factorization systems

There is an equivalence between the category of transitive, connected,
symmetric, reflexive graphs and the category of display map categories
modeling Σ- and Id-types.

Theorem

Consider a weak factorization system pL,Rq on a finitely complete
category C.
pC,Rq is a display map category modeling Σ- and Id-types if and only

if pL,Rq is generated by a transitive, connected, symmetric, reflexive
graph.

In this case, the graph is data of the model of Id-types.
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Type-theoretic weak factorization systems
Examples of transitive, connected, symmetric, reflexive graphs:

§ In groupoids, the underlying graph G– of a groupoid G
§ In categories, the underlying graph C– of the core of a category C

Moore path space in topological spaces:11

§ The naive path space X I does not have a composition
µ : X I ˆX X I Ñ X I that is unital (on either side).

§ Let ΓpX q be the space of paths of any length:
tpp, rq P XRě0 ˆ Rě0 | ppsq “ pprq for all s ě ru

§ rpxq :“ pcx , 0q
§ εpp, rq :“ ppp0q, pprqq
§ Get the wfs on Top whose right maps are the Hurewicz fibrations.

More generally:
§ Given a connected, reflexive graph, one can form the free internal

groupoid which is then a transitive, connected, symmetric, reflexive
graphs.

§ Examples: X yp1q in simplicial sets or cubical sets with connections
11May ’75
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Groupoids

Our display map category model of Σ-types and Id-types is not strictly
stable under substitution.

‚ ‚ T

E ∆ Γ

A A p

τ σ

There’s an easy solution in this case.12

§ We construct the comprehension category where functors Γ Ñ Gpd
represent types dependent on Γ.

§ This is a split comprehension category just because composition is
associative.

E
τ
ÝÑ ∆

σ
ÝÑ Γ

p
ÝÑ T

12Hofmann-Streicher ’98
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Universes

Universes

A system of universes in a display map category pC,Dq is a collection of
display maps ui : Ũi Ñ Ui such that for every display map p : T Ñ Γ,
there is a morphism α : Γ Ñ Ui for which p is a pullback α˚ui .

T Ũi

Γ Ui

p A ui

α
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Local universes model13

§ There is a left adjoint p´q! to the inclusion of split comprehension
categories into comprehension categories.

§ We get a split comprehension category pC,Dq! from any display map
category, pC,Dq whose category of contexts is just C and whose
types in context ∆ are pairs of a morphism σ : ∆ Ñ Γ and a display
map p : T Ñ Γ.

σ˚T T

∆ Γ

Aσ˚p p

σ

§ It’s split because substituting a τ : E Ñ ∆ is given by composition.

T

E ∆ Γ

p

τ σ

13Bénabou, Lusmdaine-Warren ’15



30/32

Simplicial set model14

§ For every regular cardinal α, there is a universe uα : Ũα Ñ U.

§ This classifies Kan fibrations whose fibers each have cardinality ď α.

§ The universe is univalent, meaning that the appropriate notion of
sameness between fibers of uα corresponds to homotopy equivalence
between display maps.

§ The universe carries the structure of the type formers.

14Voevodsky, Kapulkin-Lumsdaine ’18
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Types in Kan complexes
§ Σ is just composition.
§ Π is the right adjoint of pullback.
§ The Id-type of a Kan complex can be given by X∆r1s.
§ Propositions are either empty Kan complexes or contractible Kan

complexes.
§ Proposition-truncation is the 0-coskeleton

§ equivalently, add a 1-simplex between any two 0-simplices, a
2-simplex in any triangle of 1-simplices, etc...

§ Sets are disjoint unions of contractible Kan complexes.
§ Set-truncation is the 1-coskeleton

§ equivalently, add a 2-simplex in any triangle of 1-simplices, etc...

§ N is the set N
§ The circle S1 is a fibrant replacement of the simplicial set with one

0-simplex, and one non-degenerate 1-simplex.

‚

§ To do: think about what univalent categories are in simplicial sets.
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Thank you!
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