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Display map categories



Display map categories'
Definition
A display map category (C, D) consists of a category C with a terminal
object and a class D (the display maps) of morphisms of C such that
1. every pullback of every display map exists,
2. every pullback of every display map is a display map, and

3. every map to a terminal object is a display map.

Every display map category is a comprehension category

» The category of contexts is C.

» The category of types 7 is the full subcategory of C™ spanned by
those objects which are in D.

» Comprehension 7 — C™ is just the inclusion functor.

LCf. Taylor's classes of display maps, Shulman’s type-theoretic fibration categories,
and Joyal’s clans and tribes



Display map categories

» Objects of the category represent contexts.
» Display maps p: T — I represent types ' — T.
> We're taking a fibrational perspective.
> Given a point 7 : * — I (which represents a term ~ : I'), the fiber
p~1(7) represents the type T (7).

» Conditions 1 and 2: The substitution of s*T —— T
a map of contexts s : A — I into p is ls*p J/p
represented by taking the pullback: A5 T

» Condition 3: The terminal object represents the empty context, so
contexts are the same as types in the empty context.

» Sections t of p represent terms ' —t: T.

> In the empty context, terms of a type T are just points * — T.



Not a true model of HoTT

» This generally does not form a split comprehension category.

» But there are strictification theorems that turn any comprehension
category into an equivalent split one.

*» In this talk, I'm appealing to the strictification theorem of
Lumsdaine-Warren (2015) which also turns the following type
constructors, which I'll give as only weakly stable under
substitution/pullback, to their strictly stable counterparts.



Type constructors in display map categories

Consider two display maps in a display map category (C, D):
|°
A—=T

Y -types?

The X-type of p and s is Xsp := so p. Then (C,D) models X-types if D
is closed under composition.

2strong sums in the sense of Jacobs '90
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Type constructors in display map categories

Consider two display maps in a display map category (C,D):
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M-types®
A Tl-type of p and s is a display map [sp with codomain I and the

universal property
C/T(g,Msp) = C/A(s"g, p)

for every g € C/I. Then (C, D) models MN-types if there is a MN-type Mgp
for every composable s, p.

3products in the sense of Jacobs '90
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Type constructors in display map categories

Suppose that the ambient display map category (C, D) models X-types.
Consider a display map p: T —T.

|d-types*
An |d-type of p consists of " »
» a factorization of the diagonal T2 u(p) =2 Txr T
p — p x p in the slice C/T \ J{IdV
p pxp
such that r
> e(p) is a display map (which
makes Id(p) a display map), s*(p) «(p)
s*r(p) r(p)
» every pullback of r(p) as shown ] el
here has the left lifting property A r mie(p)
against D. \i s \F

(C, D) models |d-types if there is an ld-type of every display map.

*Paulin-Mohring '93, and weakly stable in the sense of Lumsdaine-Warren '15
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The Id-type®
» The ld-formation rule

r=T
Fot:T,t T Idr(t,t)

requires that there is a display map ¢(p) : ld(p) — p x p.
» The Id-introduction rule

r=T
Mt: T r(t):1dr(t,t)

requires that there is a morphism r(p) : p — Id(p).

These two rules require that there is a factorization of the diagonal
through a display map. We think of Id(p) as a path object for p.

p 2 1d(p) L2 p x p

® Awodey-Warren '08



The Id-type
» The Martin-Lof Id-elimination rule

Fot:T,t':T,q:1dr(t,t') — E(¢t,t',q)
Mot: TrHi(t): E(ttr(t))
Mt Tt T,q:dr(t,t') =j(i,t,t',q) : E(t, t',q)

requires that there is a lift in the following diagram in C/I" making
the bottom triangle commute.

of

ld(p) == Id(p)

_—
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The Id-type
» The Martin-Lof Id-elimination rule
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Mot: TrHi(t): E(ttr(t))
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» The Martin-Lof Id-computation rule
Mt:T,t':T,q:dr(¢t,t') - E(t,t',q) Mei:E(tt,r(t))
Fot: Tl et r(t) =i(t) : E(t,t,r(t))

requires that the top triangle commute.




The Id-type

» If we have such lifts, then every r(p) has the left lifting property
against every display map.

p
0|

Id(p)

o
—
B

d

<K X

» The Paulin-Mohring variant asks that this property of r(p) is stable
under certain pullbacks.
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The Id-type

» If we have such lifts, then every r(p) has the left lifting property
against every display map.
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under certain pullbacks.



Weak factorization systems

A weak factorization system on a category C is a pair (£, R) of classes of
morphisms of C such that

» every morphism of C factors into a morphism of L followed by a
morphism of R,

» L is exactly the class of morphisms with the left lifting property
against R, and

» R is exactly the class of morphisms with the right lifting property
against L.

NB: A model category contains two weak factorization systems:
(C, WA F)and (CnW,F).



Weak factorization systems®

» The Paulin-Mohring variant is exactly what is needed to generate a
weak factorization system.

Consider a category of display maps (C, D) which models ¥-, Id-types.

» Thinking of the Id-types as path types, we can form the mapping
path space factorization that takes any morphism f : X — Y in C to

1x(r(Y)of) myo(fx1)*e(Y)

X Y

X xy 1d(Y)
where X xy Id(Y) is the pullback

X xy ld(Y) —— 1d(Y)

I le
fx1
XxY ——YxY
» The right map is in D since it is a combination of pullbacks and

compositions of display maps.

6Gambino-Garner '08



Weak factorization systems’

> The left map X 200, 5 1d(Y) has the left lifting property

against D because it can be obtained as the pullback.

f*r(p)XxYld(Y) o ld(Y)
X/ Y/ moe(Y)

» Our factorization takes a map to one in ¥D followed by one of D.

» By formal nonsense, this produces a weak factorization system
(YD, D) where D is the retract closure of D.

"Gambino-Garner '08
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Type-theoretic weak factorization systems®

» Every display map category (C, D) modeling X- and Id-types
produces a weak factorization system (YD, D) on C.

» Which weak factorization systems harbor models of >- and Id-types?

» First, if (C,D) is a display map category modeling - and Id-types,
then (C,D) is a display map category modeling ¥- and Id-types
(when C is Cauchy complete).

» Every object in such a weak factorization system must be fibrant
(every map to the terminal object must be in the right class).

X

l/J

X xld(x) —

8North '17



Type-theoretic weak factorization systems

Remember: A display map category (C, D) models [1-types if for every
display map p,
1. pullback along p has a partial right adjoint I1, defined on display
maps
2. such that I, preserves D.
But 2. is equivalent to

3. pullback along p preserves ¥D.

Definition
A weak factorization system (£, R) satisfies the Frobenius condition if L
is stable under pullback along R.

Say that (£, R) is type theoretic if (1) all objects are fibrant and (2)
it satisfies the Frobenius condition.



Type-theoretic weak factorization systems

There is an equivalence between the category of display map categories
modeling - and Id-types and the category of type theoretic weak
factorization systems on a finitely complete category.

Theorem

Consider a weak factorization system (£, R) on a finitely complete
category C.
(C,R) is a display map category modeling X- and Id-types if and only
if (1) every object is fibrant and (2) it satisfies the Frobenius condition.
If for every map r in R, the pullback functor r* has a partial right
adjoint defined on R, then (C,R) models IN-types.

Given a type theoretic weak factorization system, you recover a model of
Id-types by just factoring the diagonal.



Type-theoretic weak factorization systems

Examples from Cisinski model categories:

Suppose you have a model structure (C, W, F) on a finitely complete
category M.

>

You can always restrict the wfs (C n W, F) to a wfs
(Cr n Wz, Rx) on the full subcategory Mz of fibrant objects.

M x is closed under pullbacks along morphisms of R .
So (Mx,Rx) is a display map category modeling X-types.
W is always stable under pullback in M x.

In Cisinski model categories?, C is the class of monos, and so is
always stable under pullback.

So (Cxr n Wz, RF) is Frobenius, and (M x, Rx) models Id-types.

Cisinski model categories are locally cartesian closed, so (M z, Rx)
models [M-types.

9Cisinski '06



Type-theoretic weak factorization systems

Cisinski model categories:

» Quillen model structure on sSet (fibrant objects are Kan complexes)
» Joyal model structure on sSet (fibrant objects are quasicategories)

» Cubical sets



Type-theoretic weak factorization systems

Examples from internal reflexive graphs/pseudo-relations:'0

Suppose you have, for every object X of a category C, a reflexive graph
on X:
X5HTXS X xX

It is
> strictly transitive when there is a composition g : X xx X - X
making this into an internal category,

» strictly connected when there is connection 6 : TX — ?X and a
strength 7 : X x (%) — I'(X) making certain diagrams commute,

» strictly symmetric when there is an involution ¢ : TX — 'X fixing r
and switching the endpoints.

Oyan den Berg-Garner '12, North '17



Type-theoretic weak factorization systems

There is an equivalence between the category of transitive, connected,
symmetric, reflexive graphs and the category of display map categories
modeling - and ld-types.

Theorem

Consider a weak factorization system (£, R) on a finitely complete
category C.

(C,R) is a display map category modeling - and Id-types if and only
if (L, R) is generated by a transitive, connected, symmetric, reflexive
graph.

In this case, the graph is data of the model of Id-types.



Type-theoretic weak factorization systems
Examples of transitive, connected, symmetric, reflexive graphs:
> In groupoids, the underlying graph G= of a groupoid G
» In categories, the underlying graph C= of the core of a category C

Moore path space in topological spaces:!!

» The naive path space X' does not have a composition
p: X! xx X' — X! that is unital (on either side).

» Let I'(X) be the space of paths of any length:

{(p,r) e X®=0 x Rq | p(s) = p(r) for all s > r}

» r(x) = (cx,0)

> €(p,r) = (p(0), p(r))

» Get the wfs on Top whose right maps are the Hurewicz fibrations.

More generally:

» Given a connected, reflexive graph, one can form the free internal
groupoid which is then a transitive, connected, symmetric, reflexive
graphs.

» Examples: XY in simplicial sets or cubical sets with connections

IMay '75
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Groupoids
Our display map category model of X-types and Id-types is not strictly
stable under substitution.

— e —— T

- _

T ag

!

m<«— e
D— e

There's an easy solution in this case.!?

» We construct the comprehension category where functors I — Gpd
represent types dependent on I'.

» This is a split comprehension category just because composition is
associative.

2Hofmann-Streicher '98



Universes

Universes

A system of universes in a display map category (C, D) is a collection of
display maps u; : U; — U; such that for every display map p: T — T,
there is a morphism « : I — U; for which p is a pullback o*u;.

T

p

r

El
S &



Local universes model*3

» There is a left adjoint (—); to the inclusion of split comprehension
categories into comprehension categories.

» We get a split comprehension category (C, D), from any display map
category, (C, D) whose category of contexts is just C and whose
types in context A are pairs of a morphism ¢ : A — I and a display
map p: T —1T.

— T
I
A —7—T
> It's split because substituting a 7 : E — A is given by composition.

-
I
r

E—— A7

13Bénabou, Lusmdaine-Warren '15



Simplicial set model**

» For every regular cardinal «, there is a universe u, : U, — U.
» This classifies Kan fibrations whose fibers each have cardinality < a.

» The universe is univalent, meaning that the appropriate notion of
sameness between fibers of u, corresponds to homotopy equivalence
between display maps.

» The universe carries the structure of the type formers.

*Voevodsky, Kapulkin-Lumsdaine '18



Types in Kan complexes

>

>

>

>

2 is just composition.
I is the right adjoint of pullback.
The ld-type of a Kan complex can be given by XA,
Propositions are either empty Kan complexes or contractible Kan
complexes.
Proposition-truncation is the 0-coskeleton

> equivalently, add a 1-simplex between any two O-simplices, a

2-simplex in any triangle of 1-simplices, etc...

Sets are disjoint unions of contractible Kan complexes.
Set-truncation is the 1-coskeleton

> equivalently, add a 2-simplex in any triangle of 1-simplices, etc...
N is the set N
The circle St is a fibrant replacement of the simplicial set with one
0-simplex, and one non-degenerate 1-simplex.

« D
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=

To do: think about what univalent categories are in simplicial sets.



Thank you!
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