A higher structure identity principle

Paige Randall North

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis

paigenorth.github.io/lics.pdf

$$
\text { 8-11 July } 2020
$$

Outline

(1) Motivation

2 Example: FOLDS Categories

(3) General results

Different notions of equality

Synthetic vs. analytic equalities

In Martin-Löf Type Theory, we always have a (synthetic) equality type between $a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow(a \cong b)
$$

is an equivalence.

Different notions of equality

Synthetic vs. analytic equalities

In Martin-Löf Type Theory, we always have a (synthetic) equality type between $a, b: T$

$$
a={ }_{T} b .
$$

Depending on the type T, we might have a type of "analytic equalities"

$$
a \cong b
$$

A "univalence principle" for this T and this \cong states that

$$
\left(a=_{T} b\right) \rightarrow(a \cong b)
$$

is an equivalence.
The univalence axiom in type theory states that

$$
S=_{\mathscr{U}} T \rightarrow S \simeq T
$$

is an equivalence.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a=b) \leftrightarrow(\forall P . P(a) \leftrightarrow P(b))
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a={ }_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.

Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
\left(a=_{T} b\right) \leftrightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

- This holds in MLTT.
- Given a 'univalence principle' $\left(a=_{T} b\right) \simeq(a \cong b)$, we would find a structure identity principle (in the sense of Aczel):

$$
(a \cong b) \rightarrow\left(\prod_{P: T \rightarrow \mathscr{U}} P(a) \simeq P(b)\right)
$$

Groups

Theorem: univalence principle for groups (Coquand-Danielsson) Given two groups G and H,

$$
(G=\operatorname{Grp} H) \simeq(G \cong H)
$$

Corollary: structure identity principle for groups

$$
(G \cong H) \rightarrow \prod_{P: G \mathrm{Grp} \rightarrow \mathscr{U}}(P(G) \simeq P(H))
$$

Categories

Theorem: univalence principle for categories
(Ahrens-Kapulkin-Shulman)
Given two univalent categories \mathscr{C} and \mathscr{D},

$$
\left(\mathscr{C}=\mathrm{C}_{\mathrm{at}} \mathscr{D}\right) \simeq(\mathscr{C} \simeq \mathscr{D}) .
$$

A univalent category is one in which $(x=y) \simeq(x \cong y)$ for all objects x, y.

Corollary: structure identity principle for categories

$$
(\mathscr{C} \simeq \mathscr{D}) \rightarrow \prod_{P: C \mathrm{Cat} \rightarrow \mathscr{U}}(P(\mathscr{C}) \simeq P(\mathscr{D}))
$$

Result

Our result

To define a large class of (higher) structures, a notion of univalence, and a notion of equivalence between them validating a univalence principle. This then automatically validates a structure identity principle.

Using ideas from:

- First Order Logic with Dependent Sorts, Makkai, 1995.
- Univalent categories and the Rezk completion, Ahrens, Kapulkin, Shulman, 2015.

Expanded article: arXiv:2004.06572
Expanded talk: youtu.be/aDsY2j1bff4

Examples

- t-categories,
- presheaves,
- profunctors,
- semi-displayed categories,
- bicategories,
- premonoidal categories,
- thunk-force categories,
- double bicategories,
- (symmetric) colored operads,
- duploids,
- ...

Outline

(1) Motivation

(2) Example: FOLDS Categories
(3) General results

First-order logic with dependent sorts

Inverse category

An inverse category is a strict category \mathscr{I} and a functor $\rho: \mathscr{I} \rightarrow \mathrm{Nat}^{\mathrm{Op}}$ whose fibers are discrete.

The height of an inverse category (\mathscr{I}, ρ) is the maximum value of ρ.

Signatures

Signatures are inverse categories of finite height.

Example: $\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C} O: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C} I: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

Example: $\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C} O \times \mathscr{C} O \rightarrow \mathscr{U}$
- A family $\mathscr{C} I: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Example: $\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C O} \times \mathscr{C O} \rightarrow \mathscr{U}$
- A family $\mathscr{C} I: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Example: $\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C O} \times \mathscr{C O} \rightarrow \mathscr{U}$
- A family $\mathscr{C} I: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow\left(h=h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Example: $\mathscr{L}_{\text {cat }}$-structures

We can define the data of a category \mathscr{C} to be

- A type $\mathscr{C O}: \mathscr{U}$
- A family $\mathscr{C} A: \mathscr{C O} \times \mathscr{C O} \rightarrow \mathscr{U}$
- A family $\mathscr{C} I: \prod_{(x: \mathscr{C} O)} \mathscr{C} A(x, x) \rightarrow \mathscr{U}$
- A family $\mathscr{C} T: \prod_{(x, y, z: \mathscr{C} O)} \mathscr{C A}(x, y) \rightarrow$ $\mathscr{C} A(y, z) \rightarrow \mathscr{C} A(x, z) \rightarrow \mathscr{U}$
- A family

$$
\mathscr{C} E: \prod_{(x, y: \mathscr{C} O)} \mathscr{C} A(x, y) \rightarrow \mathscr{C} A(x, y) \rightarrow \mathscr{U}
$$

We want to add axioms such as

$$
\begin{array}{r}
\forall(x, y, z: O) \cdot \forall(f: A(x, y)) \cdot \forall(g: A(y, z)) \cdot \forall\left(h, h^{\prime}: A(x, z)\right) . \\
T(x, y, z, f, g, h) \rightarrow T\left(x, y, z, f, g, h^{\prime}\right) \rightarrow E\left(h, h^{\prime}\right)
\end{array}
$$

(composites are unique), so we add an equality 'predicate'.

Univalent FOLDS-categories

Goal

To state the univalence condition

$$
(a=b) \simeq(a \cong b)
$$

for categories in terms of the the FOLDS structure.
Given $a, b: \mathscr{C} O$, we can define an isomorphism $a \cong b$ using the Yoneda Lemma:

- For each $x: \mathscr{C} O$, an equality $\phi_{x \bullet}: \mathscr{C} A(x, a)=\mathscr{C} A(x, b)$.
- For each $x, y: \mathscr{C} O, f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, a)$, and $h: \mathscr{C} A(x, a)$, we have

$$
\begin{aligned}
& \mathscr{C} T_{x, y, a}(f, g, h)=\mathscr{C} T_{x, y, b}\left(f, \phi_{y \bullet}(g), \phi_{x \bullet}(h)\right) \\
& \left(\phi_{y \bullet}(g) \circ f=\phi_{x \bullet}(g \circ f)\right)
\end{aligned}
$$

This is a bit ad hoc and not symmetric.

Indiscernibilites for objects of categories

Instead, can define $a \cong b$ to consist of the following equalities between all the types of our signature with a and b substituted in all possible ways:

- For each $x: \mathscr{C} O$, an equality $\phi_{x_{\bullet}}: \mathscr{C} A(x, a)=\mathscr{C} A(x, b)$.
- For each $z: \mathscr{C} O$, an equality $\phi_{\bullet z}: \mathscr{C} A(a, z)=\mathscr{C} A(b, z)$.
- An equality $\phi_{\bullet \bullet}: \mathscr{C} A(a, a)=\mathscr{C} A(b, b)$.
- The following equalities for all appropriate w, x, y, z, f, g, h :

$$
\begin{aligned}
T_{x, y, a}(f, g, h) & =T_{x, y, b}\left(f, \phi_{y_{\bullet}}(g), \phi_{x \bullet}(h)\right) \\
T_{x, a, z}(f, g, h) & =T_{x, b, z}\left(\phi_{x \bullet}(f), \phi_{\bullet z}(g), h\right) \\
T_{a, z, w}(f, g, h) & =T_{b, z, w}\left(\phi_{\bullet z}(f), g, \phi_{\bullet w}(h)\right) \\
T_{x, a, a}(f, g, h) & =T_{x, b, b}\left(\phi_{x_{\bullet}}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right) \\
T_{a, x, a}(f, g, h) & =T_{b, x, b}\left(\phi_{\bullet x}(f), \phi_{x \bullet}(g), \phi_{\bullet \bullet}(h)\right) \\
T_{a, a, x}(f, g, h) & =T_{b, b, x}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet x}(g), \phi_{\bullet x}(h)\right) \\
T_{a, a, a}(f, g, h) & =T_{b, b, b}\left(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h)\right)
\end{aligned}
$$

$$
\begin{aligned}
I_{a, a}(f) & =I_{b, b}\left(\phi_{\bullet \bullet}(f)\right) \\
E_{x, a}(f, g) & =E_{x, b}\left(\phi_{x \bullet}(f), \phi_{x \bullet}(g)\right) \\
E_{a, x}(f, g) & =E_{b, x}\left(\phi_{\bullet x}(f), \phi_{\bullet x}(g)\right) \\
E_{a, a}(f, g) & =E_{b, b}\left(\phi_{\bullet .}(f), \phi_{\bullet \bullet}(g)\right)
\end{aligned}
$$

"Everything above a, b thinks that a and b are the same."

Univalence

We call this an indiscernibility.
Definition (univalent structure)
A structure M of a signature \mathscr{L} is univalent if the type of indiscernibilities between any two terms of any one sort is equivalent to the type of equalities between them.

In particular, this means that all of the top-level sorts are propositions, and all of the next-level sorts are sets.

Example: Univalent $\mathscr{L}_{\text {cat }}$-structures

- Every two elements of $\mathscr{C} I_{x}(f), \mathscr{C} E_{x, y}(f, g)$, or $\mathscr{C} T_{x, y, z}(f, g, h)$ are indiscernible
- so each of these types should be a proposition.
- The axioms making E a congruence for T and I make $\mathscr{C} E(f, g)$ the type of indisceribilities between $f, g: \mathscr{C} A(x, y)$
- so we should have $(f=g)=\mathscr{C} E(f, g)$, making each $\mathscr{C} A(x, y)$ a set.
- The type of indiscernibilities between $a, b: \mathscr{C} O$ is $a \cong b$
- so we should have $(a=b)=(a \cong b)$, making each $\mathscr{C} O$ a groupoid.

Theorem

Univalent $\mathscr{L}_{\text {cat }}$-structures are equivalent to the univalent categories of Ahrens-Kapulkin-Shulman.

Categorical equivalences

Theorem (univalence for univalent categories) (AKS 2015)

Given univalent categories \mathscr{C}, \mathscr{D},

$$
(\mathscr{C}=\mathscr{D}) \simeq(\mathscr{C} \simeq \mathscr{D})
$$

A categorial equivalence are very surjective morphisms.
A very surjective morphism or equivalence $F: \mathscr{C} \simeq \mathscr{D}$ of $\mathscr{L}_{\text {cat }+\mathrm{E}}$-structures consists of surjections

- $F O: \mathscr{C O} \rightarrow \mathscr{D} O$
- $F A: \mathscr{C} A(x, y) \rightarrow \mathscr{D} A(F x, F y)$ for every $x, y: \mathscr{C} O$
- FT: $\mathscr{C} T(f, g, h) \rightarrow \mathscr{D} T(F f, F g, F h)$ for all $f: \mathscr{C} A(x, y), g: \mathscr{C} A(y, z), h: \mathscr{C} A(x, z)$
- $F E: \mathscr{C} E(f, g) \rightarrow \mathscr{D} E(F f, F g)$ for all $f, g: \mathscr{C} A(x, y)$
- $F I: \mathscr{C} I(f) \rightarrow \mathscr{D I}(F f)$ for all $f: \mathscr{C} A(x, x)$

Outline

1) Motivation

2 Example: FOLDS Categories
(3) General results

Equivalences in general

Definition (equivalence)

An equivalence $M \simeq N$ between two \mathscr{L}-structures is a very split-surjective morphism $M \rightarrow N$.

Theorem

Given two univalent \mathscr{L}-structures M and N,

$$
(M=N) \simeq(M \simeq N) .
$$

Theorem

For a signature $L: \operatorname{Sig}(n)$, the type of univalent L-structures is of h-level $n+1$.

Other structures

	Indiscernibilites of objects	Equivalences
Duploids	Neg objects: linear isos; pos objects: thunkable isos	Equivalences up to linear /thunk- able isomorphisms
Premonoidal categories	Central isomorphisms	Equivalences up to central isomor- phisms
Thunk-force categories	Thunkable isomorphisms	Equivalences up to thunkable iso- morphisms
Bicategories	Internal adjoint equiva- lences	Strong biequivalences
Symmetric col- ored operads	Isomorphisms	Equivalences
Double bicategories	Invertible companion pairs	\ldots

Summary

For every signature \mathscr{L}, we have

- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem,
- and thus a (higher) structure identity principle.

Thank you!

