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Directed type theory

Goal

To develop a directed type theory.

To develop a synthetic theory for reasoning about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes
§ Rewriting

Syntactic synthetic theories and categorical synthetic theories

§ homotopy type theory Ø weak factorization systems

§ directed homotopy type theory Ø directed weak factorization
systems

Both need to be developed.
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Rules for hom: core and op

T TYPE

T core
TYPE

T TYPE

T op
TYPE

T TYPE t : T core

it : T

T TYPE t : T core

iopt : T op
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Rules for hom: formation

Id formation

T TYPE s : T t : T

IdT ps, tq TYPE

hom formation

T TYPE s : T op t : T

homT ps, tq TYPE
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Rules for hom: introduction

Id introduction

T TYPE t : T

rt : IdT pt, tq TYPE

hom formation

T TYPE t : T core

1t : homT pi
opt, itq TYPE
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Rules for hom: right elimination and computation

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq

hom right elimination and computation

T TYPE s : T core, t : T , f : homT pi
ops, tq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T core, t : T , f : homT pi
ops, tq $ eRpd , f q : Dpf q

s : T core $ eRpd , 1sq ” dpsq : Dp1sq
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Rules for hom: left elimination and computation

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq

hom left elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq



10/33

Outline

Syntax for a directed homotopy type theory

Semantics in Cat

Two-sided weak factorization systems



11/33

Semantics in Cat
There are two functorial reflexive relations on Cat:

C Ñ C– Ñ C ˆ C

C Ñ CÑÑÑ Ñ C ˆ C

§ The first models the identity type (Σc,c 1:C Idpc , c 1q interpreted by C–)

§ The second models the homomorphism type (Σc,c 1:C hompc , c 1q
interpreted by CÑ)

§ Hurdles to generalizing this to models in more categories of directed
spaces:

§ The second factorization generates a weak factorization system, but
CÑÑÑ Ñ C ˆ C is not a right-hand map there. Old solution: consider
the twisted arrow category TwpCq Ñ Cop ˆ C

§ If we model dependent types by right maps C Ñ Γ, there’s no good
way to model the operation pΓ $ Cq ÞÑ pΓ $ Copq. Old solution: we
model dependent types by functors Γ Ñ Cat.

§ In sum: we rely too much on properties of Cat. A synthetic
categorical theory of direction should be simpler.
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WFS from relation
How do we get weak factorization systems from a functorial reflexive
relation (Id-type) on a category?

X
η
ÝÑ ΓpX q

ε0ˆε1
ÝÝÝÑ X ˆ X

First, we need to factor any map f : X Ñ Y . We do this using the
mapping path space:

X
η
ÝÑ X fˆε0ΓpY q

ε1
ÝÑ Y

But this introduces an asymmetry.
In models of identity types, this is resolved because a ‘symmetry’

involution on ΓpX q is required that preserves η and switches ε0 and ε1.
In the directed case (e.g. CÑÑÑq, this isn’t resolved and we get two

factorizations underlying two weak factorization systems.

X
η
ÝÑ X fˆε0ΓpY q

ε1
ÝÑ Y X

η
ÝÑ ΓpY qε1ˆf X

ε0
ÝÑ Y

We want to see these two wfs’s as part of the same structure.
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Relation from WFS
How do we get a functorial reflexive relation (Id-type) back from a wfs
on a category?

We factor the diagonal of every object.

X
λp∆X q
ÝÝÝÝÑ Mp∆X q

ρp∆X q
ÝÝÝÝÑ X ˆ X

In our new notion of directed weak factorization, we need to preserve this
ability.

We can think of this as the following operation.

X

X X

11 ÞÑ

X

Mp1X , 1X q

X X

λp1X q

ρ1p1qρ0p1q
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Two-sided factorization

Factorization on a category

§ a factorization of every morphism

X Yf
ÞÑ X Mf Y

λpf q ρpf q

§ that extends to morphisms of morphisms

Two-sided factorization on a category

§ a factorization of every span into a sprout

X

Y Z

gf ÞÑ

X

Mpf , gq

Y Z

λpf ,gq

ρ1pf ,gqρ0pf ,gq

§ that extends to morphisms of spans
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Relations
From any two-sided factorization, we obtain a reflexive relation on every
object

X

X X

11 ÞÑ

X

Mp1X , 1X q

X X

λp1X q

ρ1p1qρ0p1q

Conversely, from a reflexive relation X
η
ÝÑ ΓpX q

ε
ÝÑ X ,X on each object,

we obtain a two-sided factorization (Street 1974)

X

Y Z

gf ÞÑ

X

ΓpY qε1ˆf X gˆε0ΓpZ q

Y Z

ηfˆ1ˆηg

ε1πΓpZqε0πΓpY q
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Comma category

Notation

Write a span

X

Y Z

gf as f , g : X Ñ Y ,Z .

Then a factorization maps

X
f ,g
ÝÝÑ Y ,Z ÞÑ X

λpf ,gq
ÝÝÝÝÑ Mpf , gq

ρpf ,gq
ÝÝÝÝÑ Y ,Z

We’re in the comma category ∆C Ó C ˆ C.
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Lifting

Lifting

A lifting problem is a commutative square,
and a solution is a diagonal morphism
making both triangles commute.

‚ ‚

‚ ‚

Two-sided lifting

A sprout A
b
ÝÑ B

c,d
ÝÝÑ C ,D lifts against a

span X
f ,g
ÝÝÑ Y ,Z if for any commutative

diagram of solid arrows, there is a dashed
arrow making the whole diagram commute.

A X

B

C ,D Y ,Z

b

f ,g

c,d
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Two-sided fibrations

Fibrations.

Given a factorization, a fibration is a
morphism f : X Ñ Y for which there is a
lift in

X X

Mpf q Y

λpf q f

ρpf q

Two-sided fibrations

Given a two-sided factorization, a
two-sided fibration is a span
f , g : X Ñ Y ,Z for which there is a lift in

X X

Mpf , gq

Y ,Z Y ,Z

λpf ,gq

f ,g

ρpf ,gq
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Rooted cofibrations

Cofibrations

Given a factorization, a cofibration is a
morphism c : AÑ B for which there is a
lift in

A Mpcq

B B

λpcq

c ρpcq

Rooted cofibrations

Given a two-sided factorization, a
rooted cofibration is a sprout

A
b
ÝÑ B

c,d
ÝÝÑ C ,D for which there is

a lift in

A Mpcb, dbq

B

C ,D C ,D

λpcb,dbq

b

ρpcb,dbq

c,d
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First results

For a factorization...

1. every isomorphism is both a cofibration and fibration

2. cofibrations and fibrations are closed under retracts

3. cofibrations and fibrations are closed under composition

4. fibrations are stable under pullback

5. cofibrations lift against fibrations

For a two-sided factorization...

1a. every sprout whose top morphism is an isomorphism is a rooted cofibration

1b. every product projection X ˆ Y Ñ X ,Y is a two-sided fibration

2. rooted cofibrations and fibrations are closed under retracts

3. the span-composition of two two-sided fibrations is a two-sided fibration

4. two-sided fibrations are stable under pullback

5. rooted cofibrations lift against two-sided fibrations
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Two-sided weak factorization systems

Weak factorization system

A factorization pλ, ρq such that λpf q is a cofibration and ρpf q is a
fibration for each morphism f

Two-sided weak factorization system

A two-sided factorization pλ, ρq such that the span ρpf , gq is a two-sided
fibration and the sprout in green is a cofibration for each span pf , gq.

X X X

Mpf , !q Mpf , gq Mp!, gq

Y , ˚ Y ,Z ˚,Z

λpf ,!q λpf ,gq λp!,gq

ρpf ,!q

Mp1,1,!q Mp1,!,1q

ρpf ,gq ρp!,gq

!,11,!
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Two-sided weak factorization systems

Theorem (Rosický-Tholen 2002)

In a weak factorization system, the cofibrations are exactly the morphisms
with the left lifting property against the fibrations and vice versa.

Theorem

In a two-sided weak factorization system, the rooted cofibrations are
exactly the morphisms with the left lifting property against the two-sided
cofibrations and vice versa.
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Two weak factorization systems

Proposition

Consider a 2swfs pλ, ρ0, ρ1q on a category with a terminal object. This
produces two weak factorization systems: a future wfs whose underlying
factorization is given by

X Yf
ÞÑ X Mp!, f q Y

λp!,f q ρ1p!,f q

and a past wfs whose underlying factorization is given by

X Yf
ÞÑ X Mpf , !q Y

λpf ,!q ρ0pf ,!q
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Two weak factorization systems

Proposition

Consider a two-sided fibration f , g : X Ñ Y ,Z in a 2swfs. Then f is a
past fibration and g is a future fibration.

Proposition

Consider a two-sided fibration f , g : X Ñ Y ,Z in a 2swfs, a past
fibration f 1 : Y Ñ Y 1 and h1 : Z Ñ Z 1. Then f 1f , g 1g : X Ñ Y 1,Z 1 is a
two-sided fibration.
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The example in Cat

There is a 2swfs in Cat given by the factorization

C

D E

GF ÞÑ

C

DÑÑÑcodˆF C GˆdomEÑÑÑ

D E

D!Fˆ1ˆE !G

codEdomD

§ The past fibrations contain the Grothendieck fibrations

§ The future fibrations contain the Grothendieck opfibrations

§ The two-sided fibrations contain the (Grothendieck) two-sided
fibrations (Street 1974)
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2SWFSs from relations
We want to understand which 2swfs’s arise from functorial reflexive
relations, since this is how we will model the homomorphism type.

First, we characterize those functorial reflexive relations which give
rise to 2swfs.

Theorem (North 2017)

Consider a functorial reflexive relation X Ñ ΓpX q Ñ X ,X . Then the
factorization that sends f : X Ñ Y to X Ñ X ˆY ΓpY q Ñ Y underlies a
weak factorization system if and only if Γ is weakly left transitive and
weakly left connected.

Theorem

Consider a functorial reflexive relation X Ñ ΓpX q Ñ X ,X . Then the
factorization that sends f , g : X Ñ Y ,Z to
X Ñ ΓpY q ˆY X ˆZ ΓpZ q Ñ Y ,Z is a two-sided weak factorization
system if and only if Γ it is weakly left transitive, weakly right transitive,
weakly left connected, and weakly right connected.
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Type-theoretic 2SWFSs

Theorem (North 2017)

The following are equivalent for a wfs:

§ it is generated by a weakly left transitive, weakly left connected, and
weakly symmetric functorial reflexive relation X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the Frobenius
condition, that cofibrations are stable under pullback along
fibrations, holds

Fibrant object in a 2swfs

An object X such that !, ! : X Ñ ˚, ˚ is a two-sided fibration.
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Type-theoretic 2SWFSs

Two-sided Frobenius condition.

The two-sided Frobenius condition
holds when for any ‘composable’
two rooted cofibrations where db is
a future fibration and d 1f is a past
fibration,

the ‘composite’ is a cofibration.

A E

B F

C D G

b f

dc d 1 g

AˆD E

B ˆD F

C G

bˆf

dπFcπB
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Type-theoretic 2SWFSs

Theorem (North 2017)

The following are equivalent for a wfs:

§ it is generated by a weakly left transitive, weakly left connected, and
weakly symmetric functorial reflexive relation X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the Frobenius
condition, that cofibrations are stable under pullback along
fibrations, holds

Theorem

The following are equivalent for a 2swfs:

§ it is generated by a weakly left transitive, weakly right transitive,
weakly left connected, weakly right connected, functorial reflexive
relation X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the two-sided
Frobenius condition holds.
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Examples

§ In Cat, CÑÑÑ

§ In simplicial sets, free internal category on X yp1q

§ In cubical sets with connections, free internal category on X yp1q

§ In d-spaces (Grandis 2003), Moore paths ΓpX q
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Summary

We now have

§ a syntactic synthetic theory of direction and

§ a categorical synthetic theory of direction

§ which behave similarly.

We need

§ to formalize the connection between the two,

§ to get rid of the op and core operations on types using a modal type
theory à la Licata-Riley-Shulman.
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Thank you!


