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To develop a directed type theory.

To formalize theorems about:

» Higher category theory
» Directed homotopy theory

» Concurrent processes
> Rewriting

Criteria

» Directed paths are introduced as terms of a type former, hom,
to be added to Martin-Lof type theory

» Transport along terms of hom

*» Independence of hom and Id



What does directed mean?

Syntactically

Martin-L6f's identity type is symmetric/undirected since for any
type T, and terms a, b : T, there is a function

i:ldr(a,b) — Id7(b, a)

so that any path p : ldt(a, b) can be inverted to obtain a path
ip:ldr(b,a).
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Syntactically
Martin-L6f's identity type is symmetric/undirected since for any
type T, and terms a, b : T, there is a function

i:ldr(a,b) — Id7(b, a)

so that any path p : ldt(a, b) can be inverted to obtain a path
ip:ldr(b,a).
» Can think of these terms as undirected paths

» Can we design a type former of directed paths that resembles
Id but without its inversion operation 7



What does directed mean?

Theorem

C cartesian closed category. A functorial reflexive relation

]-C — Id Lm) ]-C X 1c
models identity types if and only if it is
1. transitive,
2. homotopical,

3. symmetric.
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higher groupoids

T

higher categories directed spaces
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directed paths) undirected paths)
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Rules for hom: core and op

T TYPE
T<°"® TYPE
T TYPE
T°P TYPE
T TYPE t: Teore
it: T
T TYPE t: Teore

Pt TP
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The interpretation

> Use the framework of comprehension categories
» Dependent types are represented by functors T : [ — Cat.

» Dependent terms are represented by natural transformations

*
/—ﬁ
r- e Cat
\_rj

where * : [ — Cat is the functor which takes everything to
the one-object category.

» Context extension is represented by the Grothendieck
construction which takes each functor T : ' — Cat to the
Grothendieck opfibration

ﬂr:J‘T—>r.
r



Interpreting core and op in the empty context

T TYPE T TYPE t: Teore
T TYPE T°P TYPE it: T Pt TP

For any category T,

» Tcore = ob(T)

» TOP .= T©°P

> [ T® — T and /%P : T — TO°P are the identity on
objects.



Interpreting hom formation and introduction

T TYPE s: T°P t: T T TYPE t: T

homy(s,t) TYPE 1t : hom¢(i°Pt,it) TYPE

For any category T,

» Take the functor
hom: T°° x T — Set — Cat.

» Take the natural transformation

Teore ™ n. O Cat

hom o(i°Px 1)

where each component 1; : * — hom(t, t) picks out the
identity morphism of t.



Interpreting right hom elimination and computation

T TYPE  s: T t:T,f:homr(i°®s,t) - D(f) TYPE
s: T d(s): D(1s)
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Interpreting right hom elimination and computation

T TYPE  s: T t:T,f:homr(i°®s,t) — D(f) TYPE
s T 1 d(s) : D(1Ly)
s: T t:T,f:homy(i°®s,t) - er(d,f): D(f)
s: T - er(d,15) = d(s) : D(1s)

hom » Use the fact that the subcategory

| Teerex T * T is coreflective:
m\ > for every (s, t,f) € {;ee, 7 hom
D there is a unique morphism
. Cat (1o, ) : (5,5,15) — (s, t, ) with

% domain in T<°r¢
Tcore D > Set eR(d)(sJ_-’f) = D(ls, f)d(s,s,ls)



Interpreting left hom elimination and computation

T TYPE s: TP t: T f:homy(s,it) — D(f) TYPE
s: T d(s): D(1s)
s: TP t: T f:homy(s,it) - e/ (d,f): D(f)
s: T e (d,1s) = d(s) : D(1s)

» Replace T by T°P and apply right hom elimination and
computation.
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A homotopical perspective

While the homotopy theory of isomorphisms in categories
C—-C® scxc

provides an interpretation of Martin-Lof's identity type, the
homotopy theory of morphisms in categories

c->Cc™) scexce

provides an interpretation of this hom former.



The weak factorization system

>

Let (=) denote the category with two objects and one
isomorphism between them.

Let (—) denote the category with two objects and one
morphism between them.

Then factorize the codiagonal of the one-point category in
two ways

*+*—>(;)—>* *+*—>(—>)—>*

which produces a factorization of any diagonal in two ways
which each generate weak factorization systems.

c-Cc® scxc C—->Cc™) sexce

The first gives an interpretation of the Id type in Cat.

The second underlies this interpretation of the hom type in

Cat.



The weak factorization system continued

> The right class of this weak $#— > F
factorization system are those 7
functors p : E — B which have the i

Ve
DOM .

Ve
enriched right lifting property (-»)——B
» so all Grothendieck opfibrations (dependent projections) are in

the right class.
> The functor 1, : T — {_ .. 1 hom is the left part of the

factorization of
I' . TCOFE — T
» Then the right hom elimination and computation rule arises
from the weak factorization system.

T core d S D
STcorexT hom
eR(d) -7 \L
1e _- s
_ -
STcoreX T hom =—— STcoreX T hom
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Summary & future work

Summary

We have:
» a directed type theory
» with a model in Cat.

Future work

We need to:
> integrate this into traditional Martin-Lof type theory
> integrate Id and hom in the same theory
> specify ¥, 1, etc
» find interpretations in categories of directed spaces
> build ‘directed’ weak factorization systems
> build universes



Thank you!
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