Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Directed homotopy type theory

Paige Randall North

Utrecht University

16 August 2023

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Outline

Introduction

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Outline

Introduction

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

To formalize theorems about:

Higher category theory

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting
 - Neural networks
 - ▶ _

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Goal

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes
 - Rewriting
 - Neural networks
 - ▶ _

The Id-type

Id-type

In MLTT, the *identity type* internalizes the notion of equality.

- There is a type $Id_T(a, b)$ for any type T and a, b : T
- ► Inductively generated by refl_a : Id_T(a, a)

The Id-type

Id-type

In MLTT, the *identity type* internalizes the notion of equality.

- There is a type $Id_T(a, b)$ for any type T and a, b : T
- ▶ Inductively generated by refl_a : Id_T(a, a)

We can show:

- The relation $Id_T(a, b)$ is (reflexive), transitive, and symmetric
- The identity type can be iterated:
 p, q : Id_T(a, b), α, β : Id_{Id_T(a,b)}(p,q), ...
- It is possible for $Id_{Id_T(a,b)}(p,q)$ to be empty.

Thus the Id-type constructor endows each type with the structure of an ∞ -groupoid, or *space*.

The Id-type

Id-type

In MLTT, the *identity type* internalizes the notion of equality.

- There is a type $Id_T(a, b)$ for any type T and a, b : T
- ▶ Inductively generated by refl_a : Id_T(a, a)

We can show:

- The relation $Id_T(a, b)$ is (reflexive), transitive, and symmetric
- The identity type can be iterated:
 p, q : Id_T(a, b), α, β : Id_{Id_T(a,b)}(p,q), ...
- It is possible for $Id_{Id_T(a,b)}(p,q)$ to be empty.

Thus the Id-type constructor endows each type with the structure of an $\infty\mbox{-}{\rm groupoid},$ or $\mbox{\it space}.$

 \rightarrow homotopy type theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

What does directed mean? (Syntactically)

Id-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function

 $i: \operatorname{Id}_T(a, b) \to \operatorname{Id}_T(b, a)$

so that any *path* p : $Id_T(a, b)$ can be *inverted* to obtain a path ip : $Id_T(b, a)$.

A first attempt (the hom-type former)

A second attempt (modal version) 00000000000

What does directed mean? (Syntactically)

Id-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function

$$i: \operatorname{Id}_T(a, b) \to \operatorname{Id}_T(b, a)$$

so that any *path* p : $Id_T(a, b)$ can be *inverted* to obtain a path ip : $Id_T(b, a)$.

Can think of identity terms as undirected paths

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

What does directed mean? (Syntactically)

Id-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function

 $i: \operatorname{Id}_T(a, b) \to \operatorname{Id}_T(b, a)$

so that any path p : $Id_T(a, b)$ can be *inverted* to obtain a path ip : $Id_T(b, a)$.

- Can think of identity terms as undirected paths
- Can we design a type former of *directed* paths that resembles Id but without its inversion operation *i*?

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

What does directed mean? (Semantically)

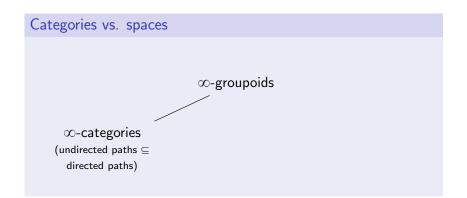
Categories vs. spaces

 ∞ -groupoids

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

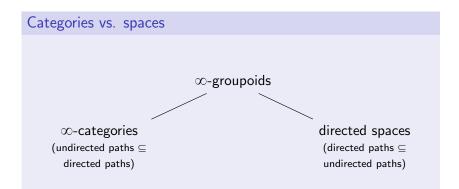
What does directed mean? (Semantically)



A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

What does directed mean? (Semantically)



Directed homotopy theory $\bullet 000$

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Outline

Introduction

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

Directed homotopy theory 0000

A first attempt (the hom-type former)

A second attempt (modal version) 00000000000

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as 'directed' $% \left({{{\mathbf{x}}_{i}}^{2}} \right)$

Directed homotopy theory 0000

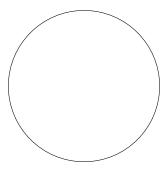
A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as 'directed'



Directed homotopy theory 0000

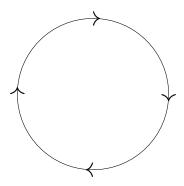
A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as 'directed'



Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

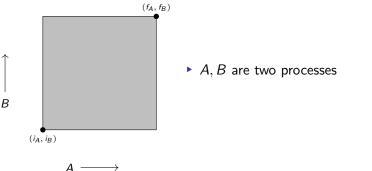
Application: concurrency

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency

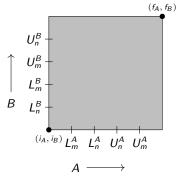


Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency



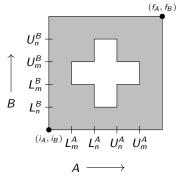
- ► A, B are two processes
- *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency



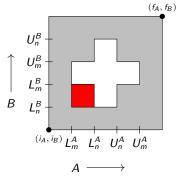
- ► A, B are two processes
- *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency



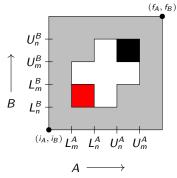
- ► A, B are two processes
- *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency



- ► A, B are two processes
- *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

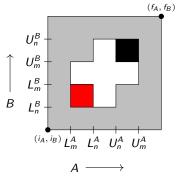
Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: concurrency

Concurrent processes can be represented by directed spaces.



- ► A, B are two processes
- *m*, *n* are two memory locations
- which can be locked (L) or unlocked (U) by each process

Fundamental questions:

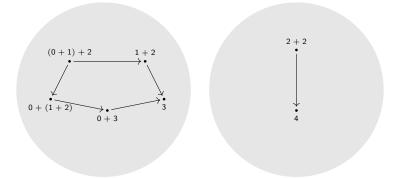
- Which states are safe?
- Which states are reachable?

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 00000000000

Application: Term rewriting systems Consider expressions in the monoid $N = (\mathbb{N}, 0, +)$.



▶ Interested in families D(n) indexed by $n \in N$ for which rewrite rules $n \to m$ induce rewrites $D(n) \to D(m)$

Directed homotopy theory

A first attempt (the hom-type former) ••••••• A second attempt (modal version) 00000000000

Outline

Introduction

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

Directed homotopy theory

A first attempt (the hom-type former) 0000000

I.

A second attempt (modal version) 00000000000

The interpretations

	Id	hom
Types	Groupoids	Categories
Dependent types	$T:\Gamma \to Grp$	$T:\Gamma \to Cat$
Dependent terms	$1 \Rightarrow T : \Gamma \rightarrow Grp$	$1 \Rightarrow T : \Gamma \rightarrow Grp$
Context extension	$\int_{\gamma \in \Gamma} T(\gamma)$	$\int_{\gamma \in \Gamma} T(\gamma)$
T ^{op}	-	T^{op}
T^{core}	-	T^{core}
ld / hom	hom : $T^{op} \times T \rightarrow Set$	hom : $T \times T \rightarrow Set$
$refl_a : Id(a, a) /$	identity	identity
1_a : hom (a, a)		

- ► Universal property of Id: \$\int_{(x,y) \in \mathcal{T} \times \mathcal{T}}\$ hom(x, y) is freely generated by the identities
- ► Universal property of hom: \$\int_{(x,y)∈T^{op}×T} hom(x,y)\$ is 'doubly' freely generated by the identities. There are two arrows from an identity to an f: postcomposing 1_x with f and precomposing 1_y with f.

Directed homotopy theory 0000

A first attempt (the hom-type former)

A second attempt (modal version) 00000000000

Rules for hom: core and op

 $\frac{T \text{ type}}{T^{\text{core}} \text{ type}}$

 $\frac{T \text{ type}}{T^{\text{op}} \text{ type}}$

 $\frac{T \text{ type } t: T^{\text{core}}}{it: T}$

 $\frac{T \text{ type } t: T^{\text{core}}}{i^{\text{op}}t: T^{\text{op}}}$

A first attempt (the hom-type former)

A second attempt (modal version) 00000000000

Rules for hom: formation

Id formation

$$\frac{T \text{ type } s: T \quad t: T}{\operatorname{Id}_{T}(s, t) \text{ type }}$$

hom formation

$$\frac{T \text{ type } s: T^{\text{op}} t: T}{\hom_{T}(s, t) \text{ type }}$$

A first attempt (the hom-type former)

A second attempt (modal version) 00000000000

Rules for hom: introduction

Id introduction

 $\frac{T \text{ type } t:T}{r_t: \mathsf{Id}_T(t,t) \text{ type }}$

hom introduction

 $\frac{T \text{ type } t: T^{\text{core}}}{1_t: \hom_T(i^{\text{op}}t, it) \text{ type}}$

A second attempt (modal version) 00000000000

Rules for hom: right elimination and computation

Id elimination and computation

$$\frac{s: T, t: T, f: \mathsf{Id}_T(s, t) \vdash D(f) \text{ type } s: T \vdash d(s): D(r_s)}{s: T, t: T, f: \mathsf{Id}_T(s, t) \vdash j(d, f): D(f)}$$
$$s: T \vdash j(d, r_s) \equiv d(s): D(r_s)$$

hom right elimination and computation

$$\frac{s: T^{\text{core}}, t: T, f: \hom_{T}(i^{\text{op}}s, t) \vdash D(f) \text{ type}}{s: T^{\text{core}} \vdash d(s) : D(1_{s})}$$
$$\frac{s: T^{\text{core}}, t: T, f: \hom_{T}(i^{\text{op}}s, t) \vdash e_{R}(d, f) : D(f)}{s: T^{\text{core}} \vdash e_{R}(d, 1_{s}) \equiv d(s) : D(1_{s})}$$

Directed homotopy theory 0000

A first attempt (the hom-type former)

A second attempt (modal version)

Rules for hom: left elimination and computation

Id elimination and computation

$$\frac{s:T,t:T,f:\mathsf{Id}_{T}(s,t)\vdash D(f) \text{ type } s:T\vdash d(s):D(r_{s})}{s:T,t:T,f:\mathsf{Id}_{T}(s,t)\vdash j(d,f):D(f)}$$
$$s:T\vdash j(d,r_{s})\equiv d(s):D(r_{s})$$

hom left elimination and computation

$$s: T^{op}, t: T^{core}, f: \hom_{T}(s, it) \vdash D(f) \text{ type}$$

$$s: T^{core} \vdash d(s): D(1_{s})$$

$$s: T^{op}, t: T^{core}, f: \hom_{T}(s, it) \vdash e_{L}(d, f): D(f)$$

$$s: T^{core} \vdash e_{L}(d, 1_{s}) \equiv d(s): D(1_{s})$$

Directed homotopy theory

A first attempt (the hom-type former) 0000000

A second attempt (modal version) 00000000000

Syntactic results

• Transport: for a dependent type $t : T \vdash S(t)$:

$$t: T^{core}, t': T, f: \hom_{T}(i^{op}t, t'), s: S(it) \\ \vdash \operatorname{transport}_{R}(s, f): S(t')$$

Directed homotopy theory

A first attempt (the hom-type former) 0000000

A second attempt (modal version) 00000000000

Syntactic results

• Transport: for a dependent type $t : T \vdash S(t)$:

$$t: T^{core}, t': T, f: \hom_{T}(i^{op}t, t'), s: S(it) \\ \vdash \operatorname{transport}_{\mathsf{R}}(s, f): S(t')$$

• Composition: for a type T:

$$r: T^{op}, s: T^{core}, t: T, f: \hom_{T}(r, is), g: \hom_{T}(i^{op}s, t) \\ \vdash \operatorname{comp}_{\mathsf{R}}(f, g): \hom_{T}(r, t)$$

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) ••••••••

Outline

Introduction

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

Directed homotopy theory 0000

A first attempt (the hom-type former) 00000000

A second attempt (modal version) 0000000000

Problems with the first attempt

The functions op, core are problematic.

- ▶ There are no introduction rules for *T*^{core} or *T*^{op}
- Including the identity type causes the hom type to collapse to the identity type on elements of T^{core}.
- We need a op function on the universe; e.g. the 1-functor op : Cat → Cat. This does not exist for 2-categories and up.

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Modal directed homotopy type theory

Solution

The solution is to properly account for core, op, etc.

- syntactically: modal type theory
- semantically: multisided weak factorization systems (jww van den Berg, McCloskey)

(The theory of multisided weak factorization systems accounts for multiple fibrations – e.g. Grothendieck fibrations, opfibrations, isofibrations – in one category and how they interact, inspired by the two-sided fibrations of Street.)

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Modal directed type theory

The idea:

• Forget about having type constructors $T \mapsto T^{op}, T^{core}$

$$x: R^{op}, y: S^{core} \vdash T$$

 Instead op and core should be descriptions of how variables can be used.

$$x \stackrel{-}{:} R, y \stackrel{\circ}{:} S \vdash T$$

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

A modal approach

Following Licata-Shulman-Riley's (2017) modal framework for the sequent calculus.

four modes that form a lattice:

- with an multiplication
 - \blacktriangleright + is the identity
 - \circ is almost an absorbing element: $\circ a = a \circ = \circ \text{ except } \circ \times = \times$
 - × is almost an absorbing element: ×a = a× = × except ×o = o
 - - is a root of unity: --=+.
- This is a sub-monoidal category of [Cat, Cat]

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Orientations

Contexts are annotated by orientations. We write:

$$w \stackrel{\times}{:} A, x \stackrel{+}{:} B, y \stackrel{-}{:} C, z \stackrel{\circ}{:} D \vdash T$$

or

$$w: A, x: B, y: C, z: D \vdash_{x,y^-,z^\circ} T$$

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Orientations

Contexts are annotated by orientations. We write:

$$w \stackrel{\times}{:} A, x \stackrel{+}{:} B, y \stackrel{-}{:} C, z \stackrel{\circ}{:} D \vdash T$$

or

$$w: A, x: B, y: C, z: D \vdash_{x,y^-,z^\circ} T$$

Orientations on contexts inherit an order from the lattice, so we use the following rule.

$$\frac{\Gamma \vdash_{\ell} \mathcal{J} \qquad m \leq \ell \ \Gamma \text{-ort}}{\Gamma \vdash_{m} \mathcal{J}} \text{ ORT-SUBST}$$

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Structural rules

$$\frac{\Gamma, x : \sigma, \Delta \operatorname{ctx}}{\Gamma, x : \sigma, \Delta \vdash_{x} x : \sigma} \operatorname{Var}$$

$$\frac{\Gamma, \Delta \vdash_{\ell, m} \mathcal{J} \quad \Gamma \vdash_{\ell} \rho \text{ type}}{\Gamma, x : \rho, \Delta \vdash_{\ell, m} \mathcal{J}} \text{ WEAK}$$

$$\frac{\Gamma, x : \rho, \Delta \vdash_{\ell, \omega, m} T}{\Gamma \vdash_{\ell} U : \rho \qquad n \leqslant \ell \ \Gamma \text{-ort} \qquad n \leqslant \omega \cdot \ell \ \Gamma \text{-ort}} \text{ Subst}$$

Directed homotopy theory

A first attempt (the hom-type former)

A second attempt (modal version)

The new hom-type

hom formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^{-}, y} \text{hom}_{A}(x, y) \text{ type}} \text{ hom-FORM}$$

hom introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\circ}} 1_{x} : \hom_{A}(x, x) \text{ type}} \text{ hom-INTRO}$$

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

The new Id-type

 Id° formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^{\circ}, y^{\circ}} \mathsf{Id}^{\circ}_{A}(x, y) \text{ type}} \mathsf{Id}^{\circ}\text{-FORM}$$

 Id° introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\circ}} \text{refl}_{x} : \text{Id}_{\mathcal{A}}^{\circ}(x, x) \text{ type}} \text{ Id}^{\circ}\text{-INTRO}$$

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

The new Id-type

 Id^{\times} formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^{\times}, y^{\times}} \mathsf{Id}^{\times}(x, y) \text{ type}} \mathsf{Id}^{\times}\text{-FORM}$$

Id^{\times} introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\times}} \text{refl}_{x} : \text{Id}^{\times}(x, x) \text{ type}} \text{ Id}^{\times}\text{-intro}$$

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Inside the type theory

What can we do?

- Find inclusions Id[◦](a, b) → hom(a, b) → Id[×](a, b), but not hom(a, b) → Id[◦](a, b).
- Transport and compose.
- What can't we do?
 - Form all Σ types (F types in LSR). For example, the one you should get from a : A ⊢_{a⊢op(a)} 1 is A^{op}.

Future work

- Connect this formally with the intended semantics (jww van den Berg-McCloskey and Ahrens-van der Weide)
- Understand which Σ types exist.
- Π-types, directed univalence, higher inductive types, etc...

Directed homotopy theory

A first attempt (the hom-type former) 00000000

A second attempt (modal version)

Thank you!