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|d-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function
i:ldr(a, b) — Id7(b,a)

so that any path p : Idr(a, b) can be inverted to obtain a path
ip g |C|T(b, a).
» Can think of identity terms as undirected paths

» Can we design a type former of directed paths that resembles
Id but without its inversion operation 7
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Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, f8)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
B 17+ » which can be locked (L) or unlocked (U)

(,.AH.B)L*A L*A l)A ()A by each process

A—s
Fundamental questions:

» Which states are safe?

» Which states are reachable?



Application: Term rewriting systems
Consider expressions in the monoid N = (N, 0, +).

242
(O0+1)+2 142 g

[N

0+ AFT— . — '3
0+3

» Interested in families D(n) indexed by n e N for which rewrite
rules n — m induce rewrites D(n) — D(m)
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Rules for hom: core and op

T type
TCOI’e type

T type
T°P type

T type t: Teore

it: T

T type t: Teore

Pt TP



Rules for hom: formation

Id formation

T type s: T t: T
IdT(57 t) type

hom formation

T type s: TP t: T
homt(s,t) type




Rules for hom: introduction

Id introduction

T type t: T
re ldr(t, t) type

hom introduction

T type t: T
1¢ : hom7(i°Pt, it) type




Rules for hom: right elimination and computation

Id elimination and computation

T type
s: T,t:T,f:ldr(s,t) = D(f) type s: THd(s):D(rs)

s:T,t: T,f:ldr(s,t) - j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)

hom right elimination and computation

T type s: T t: T,f:homy(i°®s,t) = D(f) type
s: T d(s): D(1s)
s: T t: T,f:homy(i°®s,t) - er(d,f): D(f)
s: T - er(d,1s) = d(s) : D(1s)




Rules for hom: left elimination and computation

Id elimination and computation

T type
s: T,t:T,f:ldr(s,t) = D(f) type s: THd(s):D(rs)

s:T,t:T,f:ldr(s,t) —j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)

hom left elimination and computation

T type s: T t: T f:homy(s,it) = D(f) type
s: T d(s): D(1s)
s: TP t: T f:homy(s,it) - e (d,f): D(f)
s: T e (d,1s) = d(s) : D(1s)
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t:Tere ¢/ T f:homy(i°Pt, t'),s: S(it)
I transportg(s, f) : S(t')



Syntactic results

» Transport: for a dependent type t: T + S(t):

t:Tere ¢/ T f:homy(i°Pt, t'),s: S(it)
I transportg(s, f) : S(t')

» Composition: for a type T:

r: TP s: T t:T,f:homy(r,is),g : homy(i°Ps,t)
- compr(f, g) : homy(r, t)



The interpretation

» Dependent types are represented by functors T : [ — Cat.
> T is represented by the objects of T

» T°P is represented by the opposite of T

» hom is represented by hom : T°°P — T — Set

» 1, is represented by the identity morphisms

> There are two computation rules since in X, | hom(x,y): given a
f : hom(x,y), there are two arrows from an identity to f:
postcomposing 1, with f and precomposing 1, with f



The interpretation

» Dependent types are represented by functors T : [ — Cat.
> T is represented by the objects of T

» T°P is represented by the opposite of T

» hom is represented by hom : T°°P — T — Set

» 1, is represented by the identity morphisms

> There are two computation rules since in X, | hom(x,y): given a
f : hom(x,y), there are two arrows from an identity to f:
postcomposing 1, with f and precomposing 1, with f

Point

In this model, terms of hom-types are not always invertible, so they
are not always invertible in the type theory.
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Problems with the first attempt

The functions op, core are problematic.
» There are no introduction rules for T<" or T°P

*» Including the identity type causes the hom type to collapse to
the identity type on elements of T<°'¢,

» We need a op function on the universe; e.g. the 1-functor
op : Cat — Cat. This does not exist for 2-categories and up.



Modal directed homotopy type theory

Solution
The solution is to properly account for core, op, etc.
» syntactically: modal type theory

» semantically: multisided weak factorization systems
(jww van den Berg, McCloskey)

(The theory of multisided weak factorization systems accounts for
multiple fibrations — e.g. Grothendieck fibrations, opfibrations,
isofibrations — in one category and how they interact, inspired by
the two-sided fibrations of Street.)



Modal directed type theory

The idea:

» Forget about having a type constructors T — TO°P, T
X ROP,y . geore T

*» Instead op and core should be descriptions of how variables

can be used.
x:Ry‘SHT

» Compare with linear / n-use type theory (Reed, McBride,
Licata-Shulman-Riley, Abel...)

X?R,y?SI—T



A modal approach

Following Licata-Shulman-Riley’'s (2017) modal framework for the
sequent calculus.

» four modes that form a lattice:
X
VRN
- +
NS
(@]

» with an multiplication

> + is the identity
> o is almost an absorbing element: oa = ao = o except ox = X
> X is almost an absorbing element: xa = ax = X except
X0 =0
» —is a root of unity: —— = +.

» This is a sub-monoidal category of [Cat, Cat]



Orientations

Contexts are annotated by orientations. We write:

X

w Ax By:Cz:D-T

or
wiAx:By:Cz:Diyy 0 T



Orientations

Contexts are annotated by orientations. We write:

X

w Ax By:Cz:D-T
or
wiAx:By:Cz:Diyy 0 T
Orientations on contexts inherit an order from the lattice, so we

use the following rule.

Ml J m< ¢ T-ort
lem T

ORT-SUBST



Structural rules

I x:o A ctx
Mx:0, Ay x:0

VAR

LARom T ¢ p type
r,X : P:A l_f,m J

WEAK

Mox:p, Abgxom T N, U:p
n</ lort n<w-¢ lort

[ AU/X] Eam TIU/X]

SUBST



The new hom-type

hom formation

¢ A type
Fox: Ay Ay, homa(x,y) type

hom-FORM

hom introduction

[¢ A type

hom-INTRO
[, x Aty 1t homa(x, x) type




The new Id-type

Id° formation

[, A type
S |d°-FORM
Fox 1Ayt Albpxeo o lda(x,y) type
Id° introduction
[ ¢ A type
Id°-INTRO

[,x 1 Ao refly o 1d(x, x) type



The new Id-type

Id* formation

[, A type

Id*-FORM
Cox 1Ayt Abpyxyx Id* (X, y) type

Id* introduction

[, A type
Fox 0 Ao refle o 1d* (x, x) type

Id*-INTRO



Inside the type theory

What can we do?
» Find inclusions Id°(a, b) — hom(a, b) — Id*(a, b), but not
hom(a, b) — 1d°(a, b).
» Transport and compose.
What can't we do?

» Form all ¥ types (F types in LSR). For example, the one you
should get from a: A,- 1 is A°P.

Future work

» Connect this formally with the intended semantics (jww van
den Berg-McCloskey and Ahrens-van der Weide)

» Understand which X types exist.

> [l-types, directed univalence, higher inductive types, etc...



Thank you!
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