Directed homotopy type theory

Paige Randall North

Utrecht University

14 December 2022

Outline

Introduction

Directed homotopy theory

The hom-type former

Modal homotopy type theory

Outline

Introduction

Goal

Goal
To develop a directed type theory.

Goal

Goal
To develop a directed type theory.

To formalize theorems about:

Goal

Goal
To develop a directed type theory.

To formalize theorems about:

» Higher category theory

Goal

Goal
To develop a directed type theory.

To formalize theorems about:

» Higher category theory
> Directed homotopy theory

Goal

Goal
To develop a directed type theory.

To formalize theorems about:

» Higher category theory
> Directed homotopy theory

» Concurrent processes
> Rewriting

> Neural networks

>

Goal

Goal
To develop a directed type theory.

To formalize theorems about:

» Higher category theory
> Directed homotopy theory

» Concurrent processes
> Rewriting

> Neural networks

>

The Id-type

ld-type

In MLTT, the identity type internalizes the notion of equality.
» There is a type Id1(a, b) for any type T and a,b: T
» Inductively generated by refl, : Idr(a, a)

The Id-type

ld-type

In MLTT, the identity type internalizes the notion of equality.
» There is a type Id1(a, b) for any type T and a,b: T
» Inductively generated by refl, : Idr(a, a)

We can show:

» The relation Idt(a, b) is (reflexive), transitive, and symmetric
> The identity type can be iterated:

p.q:ldr(a,b), «,B :Idig;(ap)(P:q),
> It is possible for Idiy, (25)(P; q) to be empty.

Thus the Id-type constructor endows each type with the structure
of an co-groupoid, or space.

The Id-type

ld-type

In MLTT, the identity type internalizes the notion of equality.
» There is a type Id1(a, b) for any type T and a,b: T
» Inductively generated by refl, : Idr(a, a)

We can show:

» The relation Idt(a, b) is (reflexive), transitive, and symmetric
> The identity type can be iterated:

p.q:ldr(a,b), «,B :Idig;(ap)(P:q),
> It is possible for Idiy, (25)(P; q) to be empty.

Thus the Id-type constructor endows each type with the structure
of an co-groupoid, or space.

— homotopy type theory

What does directed mean? (Syntactically)

|d-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function
i:ldr(a, b) — Id7(b,a)

so that any path p : Idr(a, b) can be inverted to obtain a path
ip g |C|T(b, a).

What does directed mean? (Syntactically)

|d-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function
i:ldr(a, b) — Id7(b,a)

so that any path p : Idr(a, b) can be inverted to obtain a path
ip g |C|T(b, a).
» Can think of identity terms as undirected paths

What does directed mean? (Syntactically)

|d-type is symmetric/undirected

For any type T, and terms a, b : T, there is a function
i:ldr(a, b) — Id7(b,a)

so that any path p : Idr(a, b) can be inverted to obtain a path
ip g |C|T(b, a).
» Can think of identity terms as undirected paths

» Can we design a type former of directed paths that resembles
Id but without its inversion operation 7

What does directed mean? (Semantically)

Categories vs. spaces

co-groupoids

What does directed mean? (Semantically)

Categories vs. spaces

co-groupoids

/

oo-categories
(undirected paths <
directed paths)

What does directed mean? (Semantically)

Categories vs. spaces

co-groupoids

T

co-categories directed spaces
(undirected paths < (directed paths <
directed paths) undirected paths)

Outline

Directed homotopy theory

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as
‘directed’

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as
‘directed’

Directed spaces

Rough definition

A space together with a subset of its paths that are marked as
‘directed’

Application: concurrency

Concurrent processes can be represented by directed spaces.

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa,)

> A, B are two processes

(ia, ig)

10/31

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, f8)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
B 17+ » which can be locked (L) or unlocked (U)

(,.AH.B)L*A L*A l)A ()A by each process

A—

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, f8)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
B 17+ » which can be locked (L) or unlocked (U)

(,.AH.B)L*A L*A l)A ()A by each process

A—

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, fg)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
By > which can be locked (L) or unlocked (U)

(iA,iB),_L\ L*A l)A ()A by each process

A—

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, f8)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
B 17+ » which can be locked (L) or unlocked (U)

(iA,iB),_L\ L*A l)A ()A by each process

A—

Application: concurrency

Concurrent processes can be represented by directed spaces.

(fa, f8)
Us T
Un T
W " » A, B are two processes
Lo T > m, n are two memory locations
B 17+ » which can be locked (L) or unlocked (U)

(,.AH.B)L*A L*A l)A ()A by each process

A—s
Fundamental questions:

» Which states are safe?

» Which states are reachable?

Application: Term rewriting systems
Consider expressions in the monoid N = (N, 0, +).

242
(O0+1)+2 142 g

[N

0+ AFT— . — '3
0+3

» Interested in families D(n) indexed by n e N for which rewrite
rules n — m induce rewrites D(n) — D(m)

Outline

The hom-type former

Rules for hom: core and op

T type
TCOI’e type

T type
T°P type

T type t: Teore

it: T

T type t: Teore

Pt TP

Rules for hom: formation

Id formation

T type s: T t: T
IdT(57 t) type

hom formation

T type s: TP t: T
homt(s,t) type

Rules for hom: introduction

Id introduction

T type t: T
re ldr(t, t) type

hom introduction

T type t: T
1¢ : hom7(i°Pt, it) type

Rules for hom: right elimination and computation

Id elimination and computation

T type
s: T,t:T,f:ldr(s,t) = D(f) type s: THd(s):D(rs)

s:T,t: T,f:ldr(s,t) - j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)

hom right elimination and computation

T type s: T t: T,f:homy(i°®s,t) = D(f) type
s: T d(s): D(1s)
s: T t: T,f:homy(i°®s,t) - er(d,f): D(f)
s: T - er(d,1s) = d(s) : D(1s)

Rules for hom: left elimination and computation

Id elimination and computation

T type
s: T,t:T,f:ldr(s,t) = D(f) type s: THd(s):D(rs)

s:T,t:T,f:ldr(s,t) —j(d,f): D(f)
s: T+ j(d,rs)=d(s): D(rs)

hom left elimination and computation

T type s: T t: T f:homy(s,it) = D(f) type
s: T d(s): D(1s)
s: TP t: T f:homy(s,it) - e (d,f): D(f)
s: T e (d,1s) = d(s) : D(1s)

Syntactic results

» Transport: for a dependent type t: T + S(t):

t:Tere ¢/ T f:homy(i°Pt, t'),s: S(it)
I transportg(s, f) : S(t')

Syntactic results

» Transport: for a dependent type t: T + S(t):

t:Tere ¢/ T f:homy(i°Pt, t'),s: S(it)
I transportg(s, f) : S(t')

» Composition: for a type T:

r: TP s: T t:T,f:homy(r,is),g : homy(i°Ps,t)
- compr(f, g) : homy(r, t)

The interpretation

» Dependent types are represented by functors T : [— Cat.
> T is represented by the objects of T

» T°P is represented by the opposite of T

» hom is represented by hom : T°°P — T — Set

» 1, is represented by the identity morphisms

> There are two computation rules since in X, | hom(x,y): given a
f : hom(x,y), there are two arrows from an identity to f:
postcomposing 1, with f and precomposing 1, with f

The interpretation

» Dependent types are represented by functors T : [— Cat.
> T is represented by the objects of T

» T°P is represented by the opposite of T

» hom is represented by hom : T°°P — T — Set

» 1, is represented by the identity morphisms

> There are two computation rules since in X, | hom(x,y): given a
f : hom(x,y), there are two arrows from an identity to f:
postcomposing 1, with f and precomposing 1, with f

Point

In this model, terms of hom-types are not always invertible, so they
are not always invertible in the type theory.

Outline

Modal homotopy type theory

Problems with the first attempt

The functions op, core are problematic.
» There are no introduction rules for T<" or T°P

*» Including the identity type causes the hom type to collapse to
the identity type on elements of T<°'¢,

» We need a op function on the universe; e.g. the 1-functor
op : Cat — Cat. This does not exist for 2-categories and up.

Modal directed homotopy type theory

Solution
The solution is to properly account for core, op, etc.
» syntactically: modal type theory

» semantically: multisided weak factorization systems
(jww van den Berg, McCloskey)

(The theory of multisided weak factorization systems accounts for
multiple fibrations — e.g. Grothendieck fibrations, opfibrations,
isofibrations — in one category and how they interact, inspired by
the two-sided fibrations of Street.)

Modal directed type theory

The idea:

» Forget about having a type constructors T — TO°P, T
X ROP,y . geore T

*» Instead op and core should be descriptions of how variables

can be used.
x:Ry‘SHT

» Compare with linear / n-use type theory (Reed, McBride,
Licata-Shulman-Riley, Abel...)

X?R,y?SI—T

A modal approach

Following Licata-Shulman-Riley’'s (2017) modal framework for the
sequent calculus.

» four modes that form a lattice:
X
VRN
- +
NS
(@]

» with an multiplication

> + is the identity
> o is almost an absorbing element: oa = ao = o except ox = X
> X is almost an absorbing element: xa = ax = X except
X0 =0
» —is a root of unity: —— = +.

» This is a sub-monoidal category of [Cat, Cat]

Orientations

Contexts are annotated by orientations. We write:

X

w Ax By:Cz:D-T

or
wiAx:By:Cz:Diyy 0 T

Orientations

Contexts are annotated by orientations. We write:

X

w Ax By:Cz:D-T
or
wiAx:By:Cz:Diyy 0 T
Orientations on contexts inherit an order from the lattice, so we

use the following rule.

Ml J m< ¢ T-ort
lem T

ORT-SUBST

Structural rules

I x:o A ctx
Mx:0, Ay x:0

VAR

LARom T ¢ p type
r,X : P:A l_f,m J

WEAK

Mox:p, Abgxom T N, U:p
n</ lort n<w-¢ lort

[AU/X] Eam TIU/X]

SUBST

The new hom-type

hom formation

¢ A type
Fox: Ay Ay, homa(x,y) type

hom-FORM

hom introduction

[¢ A type

hom-INTRO
[, x Aty 1t homa(x, x) type

The new Id-type

Id° formation

[, A type
S |d°-FORM
Fox 1Ayt Albpxeo o lda(x,y) type
Id° introduction
[¢ A type
Id°-INTRO

[,x 1 Ao refly o 1d(x, x) type

The new Id-type

Id* formation

[, A type

Id*-FORM
Cox 1Ayt Abpyxyx Id* (X, y) type

Id* introduction

[, A type
Fox 0 Ao refle o 1d* (x, x) type

Id*-INTRO

Inside the type theory

What can we do?
» Find inclusions Id°(a, b) — hom(a, b) — Id*(a, b), but not
hom(a, b) — 1d°(a, b).
» Transport and compose.
What can't we do?

» Form all ¥ types (F types in LSR). For example, the one you
should get from a: A,- 1 is A°P.

Future work

» Connect this formally with the intended semantics (jww van
den Berg-McCloskey and Ahrens-van der Weide)

» Understand which X types exist.

> [l-types, directed univalence, higher inductive types, etc...

Thank you!

	Introduction
	Directed homotopy theory
	The hom-type former
	Modal homotopy type theory

