Approaches to directed homotopy type theory

Paige Randall North

Utrecht University

5 July 2023

Outline

Introduction

A first attempt (the hom-type former)

A second attempt (modal version)

Goal

To develop a directed type theory.

Goal

To develop a directed type theory.

Goal

To develop a directed type theory.

To formalize theorems about:

► Higher category theory

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes (plugging into Fajstrup-Goubault-Haucourt-Mimram-Raussen)
 - Rewriting
 - Neural networks
 - ٠.

Goal

To develop a directed type theory.

- Higher category theory
- Directed homotopy theory
 - Concurrent processes (plugging into Fajstrup-Goubault-Haucourt-Mimram-Raussen)
 - Rewriting
 - Neural networks
 - ٠.

The Id-type

Id-type

In MLTT, the *identity type* internalizes the notion of equality.

- ▶ There is a type $Id_T(a, b)$ for any type T and a, b : T
- ▶ Inductively generated by $refl_a : Id_T(a, a)$

The Id-type

Id-type

In MLTT, the *identity type* internalizes the notion of equality.

- ▶ There is a type $Id_T(a, b)$ for any type T and a, b : T
- ▶ Inductively generated by refl_a : $Id_T(a, a)$

We can show:

- ▶ The relation $Id_T(a, b)$ is (reflexive), transitive, and symmetric
- ▶ The identity type can be iterated: $p, q : \operatorname{Id}_{T}(a, b), \quad \alpha, \beta : \operatorname{Id}_{\operatorname{Id}_{T}(a, b)}(p, q), \quad \dots$
- ▶ It is possible for $Id_{Id_T(a,b)}(p,q)$ to be empty.

Thus each type gets the structure of an ∞ -groupoid, or *space*.

The Id-type

Id-type

In MLTT, the identity type internalizes the notion of equality.

- ▶ There is a type $Id_T(a, b)$ for any type T and a, b : T
- ▶ Inductively generated by $refl_a$: $Id_T(a, a)$

We can show:

- ▶ The relation $Id_T(a, b)$ is (reflexive), transitive, and symmetric
- ► The identity type can be iterated: $p, q : \operatorname{Id}_{T}(a, b), \quad \alpha, \beta : \operatorname{Id}_{\operatorname{Id}_{T}(a, b)}(p, q), \quad \dots$
- ▶ It is possible for $Id_{Id_T(a,b)}(p,q)$ to be empty.

Thus each type gets the structure of an ∞ -groupoid, or *space*.

Can we find a type former that resembles Id, i.e. is reflexive and transitive, but *not symmetric*?

Directed spaces

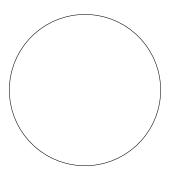
Rough definition

A space together with a subset of its paths that are marked as 'directed'

Directed spaces

Rough definition

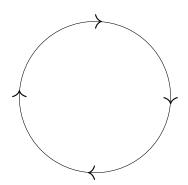
A space together with a subset of its paths that are marked as 'directed'



Directed spaces

Rough definition

A space together with a subset of its paths that are marked as 'directed'



Rules for hom: core and op

$$\frac{T \text{ type}}{T^{\text{core}} \text{ type}}$$

$$\frac{T \text{ type}}{T^{\text{op}} \text{ type}}$$

$$\frac{T \text{ type} \qquad t : T^{\text{core}}}{it : T}$$

$$\frac{T \text{ type} \qquad t : T^{\text{core}}}{i^{\text{op}}t : T^{\text{op}}}$$

hom

The interpretations

	iu	110111
Types	Groupoids	Categories
Dependent types	$T:\Gamma o Grp$	$T:\Gamma o Cat$
Dependent terms	$1 \Rightarrow T : \Gamma \rightarrow \textit{Grp}$	$1 \Rightarrow T : \Gamma \rightarrow \textit{Grp}$
Context extension	$\int_{\gamma \in \Gamma} T(\gamma)$	$\int_{\gamma \in \Gamma} T(\gamma)$
\mathcal{T}^op	-	Top
\mathcal{T}^{core}	-	\mathcal{T}^{core}
Id / hom	$hom: T^op \times T \to Set$	$hom: \mathcal{T}\times\mathcal{T}\toSet$
$refl_a : Id(a, a) /$	identity	identity
1_a : hom (a, a)		

- ▶ Universal property of Id: $\int_{(x,y)\in T\times T} \text{hom}(x,y)$ is freely generated by the identities
- ▶ Universal property of hom: $\int_{(x,y)\in T^{op}\times T} hom(x,y)$ is 'double' freely generated by the identities. There are two arrows from an identity to an f: postcomposing 1_x with f and precomposing 1_y with f.

Rules for hom: formation

Id formation

$$\frac{T \text{ type } s: T \text{ } t: T}{\mathsf{Id}_{T}(s,t) \text{ type }}$$

hom formation

$$\frac{T \text{ type } s: T^{\text{op}} \quad t: T}{\text{hom}_{T}(s, t) \text{ type}}$$

Rules for hom: introduction

Id introduction

$$\frac{T \text{ type } t : T}{r_t : \mathsf{Id}_T(t, t) \text{ type}}$$

hom introduction

$$\frac{T \text{ type } t : T^{\text{core}}}{1_t : \text{hom}_T(i^{\text{op}}t, it) \text{ type}}$$

Rules for hom: right elimination and computation

Id elimination and computation

$$\frac{s:T,t:T,f:\operatorname{Id}_{T}(s,t)\vdash D(f)\ \ \operatorname{type} \qquad s:T\vdash d(s):D(r_{s})}{s:T,t:T,f:\operatorname{Id}_{T}(s,t)\vdash j(d,f):D(f)}$$
$$s:T\vdash j(d,r_{s})\equiv d(s):D(r_{s})$$

hom right elimination and computation

```
\begin{aligned} s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_{T}(i^{\mathsf{op}}s, t) &\vdash D(f) \ \mathsf{type} \\ s: T^{\mathsf{core}} &\vdash d(s) : D(1_{s}) \\ \hline s: T^{\mathsf{core}}, t: T, f: \mathsf{hom}_{T}(i^{\mathsf{op}}s, t) &\vdash e_{R}(d, f) : D(f) \\ s: T^{\mathsf{core}} &\vdash e_{R}(d, 1_{s}) \equiv d(s) : D(1_{s}) \end{aligned}
```

Rules for hom: left elimination and computation

Id elimination and computation

$$\frac{s:T,t:T,f:\operatorname{Id}_{T}(s,t)\vdash D(f)\ \ \operatorname{type} \qquad s:T\vdash d(s):D(r_{s})}{s:T,t:T,f:\operatorname{Id}_{T}(s,t)\vdash j(d,f):D(f)}$$
$$s:T\vdash j(d,r_{s})\equiv d(s):D(r_{s})$$

hom left elimination and computation

```
\begin{split} s: T^{\mathsf{op}}, t: T^{\mathsf{core}}, f: \mathsf{hom}_{\mathcal{T}}(s, it) &\vdash D(f) \ \mathsf{type} \\ \underline{s: T^{\mathsf{core}} \vdash d(s): D(1_s)} \\ \overline{s: T^{\mathsf{op}}, t: T^{\mathsf{core}}, f: \mathsf{hom}_{\mathcal{T}}(s, it) \vdash e_L(d, f): D(f)} \\ s: T^{\mathsf{core}} \vdash e_L(d, 1_s) &\equiv d(s): D(1_s) \end{split}
```

Problems with the first attempt

The functions op, core are problematic.

- ▶ There are no introduction rules for T^{core} or T^{op}
- ▶ Including the identity type causes the hom type to collapse to the identity type on elements of *T*^{core}.
- We need a op function on the universe; e.g. the 1-functor op: Cat → Cat. This does not exist for 2-categories and up.

Modal directed homotopy type theory

Solution

The solution is to properly account for core, op, etc.

- syntactically: modal type theory
- semantically: multisided weak factorization systems (jww van den Berg, McCloskey)

(The theory of multisided weak factorization systems accounts for multiple fibrations – e.g. Grothendieck fibrations, opfibrations, isofibrations – in one category and how they interact, inspired by the two-sided fibrations of Street.)

Modal directed type theory

The idea:

▶ Forget about having a type constructors $T \mapsto T^{op}, T^{core}$

$$x: R^{op}, y: S^{core} \vdash T$$

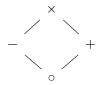
Instead op and core should be descriptions of how variables can be used.

$$x \bar{:} R, y \bar{:} S \vdash T$$

A modal approach

Following Licata-Shulman-Riley's (2017) modal framework for the sequent calculus.

four modes that form a lattice:



- with an multiplication
 - + is the identity
 - o is almost an absorbing element: $\circ a = a \circ = \circ \text{ except } \circ \times = \times$
 - × is almost an absorbing element: ×a = a× = × except ×o = o
 - is a root of unity: -- = +.
- ► This is a sub-monoidal category of [Cat, Cat]

Orientations

Contexts are annotated by orientations. We write:

$$w \stackrel{\times}{:} A, x \stackrel{+}{:} B, y \stackrel{-}{:} C, z \stackrel{\circ}{:} D \vdash T$$

or

$$w : A, x : B, y : C, z : D \vdash_{x,y^-,z^{\circ}} T$$

Orientations

Contexts are annotated by *orientations*. We write:

$$w \stackrel{\times}{:} A, x \stackrel{+}{:} B, y \stackrel{-}{:} C, z \stackrel{\circ}{:} D \vdash T$$

or

$$w: A, x: B, y: C, z: D \vdash_{x,y^-,z^\circ} T$$

Orientations on contexts inherit an order from the lattice, so we use the following rule.

$$\frac{\Gamma \vdash_{\ell} \mathcal{J} \qquad m \leqslant \ell \ \Gamma\text{-ort}}{\Gamma \vdash_{m} \mathcal{J}} \text{ Ort-Subst}$$

Structural rules

$$\frac{\Gamma, x : \sigma, \Delta \operatorname{ctx}}{\Gamma, x : \sigma, \Delta \vdash_{x} x : \sigma} \operatorname{VAR}$$

$$\frac{\Gamma, \Delta \vdash_{\ell, m} \mathcal{J} \qquad \Gamma \vdash_{\ell} \rho \operatorname{type}}{\Gamma, x : \rho, \Delta \vdash_{\ell, m} \mathcal{J}} \operatorname{Weak}$$

$$\frac{\Gamma, x : \rho, \Delta \vdash_{\ell, m} \mathcal{J}}{\Gamma, \Delta \vdash_{\ell} \rho \operatorname{cort} \qquad n \leqslant \omega \cdot \ell \ \Gamma \operatorname{-ort}} \operatorname{Subst}$$

$$\frac{\Gamma \vdash_{\ell} U : \rho \qquad n \leqslant \ell \ \Gamma \operatorname{-ort} \qquad n \leqslant \omega \cdot \ell \ \Gamma \operatorname{-ort}}{\Gamma, \Delta [U/x] \vdash_{n, m} T[U/x]} \operatorname{Subst}$$

The new hom-type

hom formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^-, y} \mathsf{hom}_A(x, y) \text{ type}} \mathsf{hom}\text{-}\mathsf{FORM}$$

hom introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\circ}} 1_{x} : \mathsf{hom}_{A}(x, x) \text{ type}} \mathsf{hom}\text{-}\mathsf{INTRO}$$

The new Id-type

Id° formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^{\circ}, y^{\circ}} \mathsf{Id}^{\circ}_{A}(x, y) \text{ type}} \mathsf{Id}^{\circ}\text{-}\mathsf{FORM}$$

Id° introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\circ}} \text{refl}_{x} : \text{Id}_{A}^{\circ}(x, x) \text{ type}} \text{ Id}^{\circ}\text{-INTRO}$$

The new Id-type

Id[×] formation

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A, y : A \vdash_{\ell, x^{\times}, y^{\times}} \mathsf{Id}^{\times}(x, y) \text{ type}} \mathsf{Id}^{\times}\text{-}\mathsf{FORM}$$

Id[×] introduction

$$\frac{\Gamma \vdash_{\ell} A \text{ type}}{\Gamma, x : A \vdash_{\ell, x^{\times}} \text{refl}_{x} : \text{Id}^{\times}(x, x) \text{ type}} \text{ Id}^{\times}\text{-}\text{INTRO}$$

Inside the type theory

What can we do?

- Find inclusions Id^o(a, b) → hom(a, b) → Id[×](a, b), but not hom(a, b) → Id^o(a, b).
- Transport and compose.

What can't we do?

▶ Form all Σ types (F types in LSR). For example, the one you should get from $a: A \vdash_{a \vdash op(a)} 1$ is A^{op} .

Future work

- Connect this formally with the intended semantics (jww van den Berg-McCloskey and Ahrens-van der Weide)
- Understand which Σ types exist.
- ► Π-types, directed univalence, higher inductive types, etc...

Thank you!