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Type theory’s beginnings

• 1970s: Martin-Löf introduces his type theory
• As a self-sufficient foundation of mathematics
• Well-suited for machine verification

Classical mathematics: Mathematics à la Martin-Löf:

Homotopical mathematics

Categorical notions

Set theory Type theory

First-order logic
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What does type theory look like?

• In mathematics, statements look like the following:
• Consider a natural number n. The sum n+ n is even.
• Consider a space X. The cone on X is contractible.

• In type theory, we write this as
• n : N ⊢ e(n) : isEven(n+ n)
• X : Spaces ⊢ c(X) : isContr(CX)
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Interpretations of type theory into classical mathematics

Classical mathematics: Mathematics à la Martin-Löf:

Spaces

Categories

Sets Type theory

Propositions
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Interpretations of type theory into classical mathematics

Types Terms Product Equality
Propositions proofs ∧ =
Sets elements × =
Categories objects × ∼=
Spaces points × ∼

• Everything in type theory respects equality
• This is the definition of equality in type theory (roughly)

• Mathematics in type theory
+ Interpretation into Xs where equality is interpreted by Y
⇝ Mathematics in Xs up to Y
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Different notions of equality

Synthetic vs. analytic equalities
In type theory with the equality type, we always have a
(“synthetic”) equality type between a, b : D

a =D b.

Depending on the type D, we might also have a type of “analytic”
equalities

a ≃D b.

A univalence principle for this D and this ≃D states that

(a =D b)→ (a ≃D b)

is an equivalence.
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Identicals and indiscernibilites

Identity of indiscernibles
Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a = b)←
(
∀P.P (a)↔ P (b)

)

• This holds in type theory.
• Given a univalence principle (a =D b) ≃ (a ≃D b), we find an

equivalence principle:

(a ≃D b)→

 ∏
P :D→Type

P (a) ≃ P (b)

 .
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Univalence

• We’ve seen that equality in type theory can be interpreted as
notions weaker than classical equality (e.g. isomorphism,
paths).
• Voevodsky imported weakness for equality from the

interpretation in spaces into type theory by imposing the
Univalence Axiom (UA):

The canonical function (A =Type B)→ (A ≃ B) is an
equivalence of types, for any types A and B.

• UA is validated by the interpretation into spaces, but not into
propositions, sets, or groupoids.
• Instead we internalize these notions.
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Internalization of classical mathematics into type theory

Classical mathematics: Mathematics à la Martin-Löf:

∞ Spaces

1 Groupoids

0 Sets Type theory

−1 Propositions

−2

...
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How to think about homotopy type theory

• Internal language for higher toposes, in particular spaces
• Basic elements are objects, fibrations, sections
• Everything is invariant under homotopy; only have access to

strict equality via sections

• Thus difficult to replicate ‘classical’ constructions
• But everything is invariant under homotopy
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Univalent mathematics
• If two types A,B are propositions,

(A =Prop B)
UA≃

(A ≃ B) ≃ (A↔ B)

so everything respects bi-implication of propositions.

• If A,B are sets,

(A =Set B)
UA≃ (A ≃ B) ≃ (A ∼= B)

so everything respects bijection of sets.
• For types A,B which are structured sets (groups, rings, etc),

(A =Grp B)
UA≃ (A ≃ B) ≃ (A ∼= B)

so everything respects isomorphism of groups (or rings, etc).3
• For univalent categories A,B,

(A =UCat B)
UA≃ (A ≃ B) ≃ (A ≃ B)

so everything respects equivalence of univalent categories.4

3Coquand-Danielsson 2013
4Ahrens-Kapulkin-Shulman 2015, cf. 1-truncated complete Segal spaces
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Univalent mathematics

• Voevodsky dreamt of ‘univalent mathematics’ in which

(A =D B) ≃ (A ≃D B)

where D is any type of mathematical object (propositions, sets,
groups, categories, ∞-categories, etc) and ≃D is the
appropriate notion of ‘sameness’ for that type of objects.
• This would give us an appropriate language in which to study
D.

• We5 realize this dream for ‘finite’ categorical structures.

5jww Ahrens, Shulman, Tsementzis
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Signatures

1 A E I M

0 O O

3 T2 I2 E H A L R

2 T I E C2 T1 I1

1 A C1

0 O C0

LProset LGroup

LCat LbiCat
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Structures

• Morally, an L-structure for a signature L is a Reedy fibrant
diagram L → Type.

• In type theory, we define an L-structure fiberwise.
• An LCat-structure C consists of:

T I E

A

O

LCat

• CO : Type

• x, y : CO ⊢ CA(x, y) : Type

• x : CO, f : CA(x, x) ⊢ CIx(f) : Type
• x, y, z : CO, f : CA(x, y), g : CA(y, z), h :
CA(x, z) ⊢ CTx,y,z(f, g, h) : Type

• x, y : CO, f, g : CA(x, y) ⊢ CEx,y(f, g) : Type

• Then we add axioms.
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Level-wise equivalence

Proposition
For two L-structures S, T ,

(S =L−Str T ) ≃ (S ∼=L−Str T )

where ∼=L−Str denotes levelwise equivalence.

A levelwise equivalence C ∼=LCat−Str D consists of:
• eO : CO ∼−→ DO
• x, y : CO ⊢ eA : CA(x, y)

∼−→ D(eOx, eOy)
• x : CO, f : CA(x, x) ⊢ eI : CIx(f)

∼−→ DIeOx(eAf)

• x, y, z : CO, f : CA(x, y), g : CA(y, z), h : CA(x, z) ⊢
CTx,y,z(f, g, h)

∼−→ DTeOx,eOy,eOz(eAf, eAg, eAh)

• x, y : CO, f, g : CA(x, y) ⊢ CEx,y(f, g)
∼−→ CEeOx,eOy(eAf, eAg)

But this is not an equivalence of categories.
And is it appropriate to call C,D categories?
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Indiscernibility

Definition
Given an L-structure M , and an object S of L, we say that two
elements x, y : MS are indiscernible if substituting x for y in any
object of L that depends on (i.e. object with a morphism to) S
produces equivalent types.

Definition
An L-structure M is univalent if for any object S of L, and any
x, y : MS, the type of indiscernibilities between x and y is
equivalent to the type of equalities between x and y.
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Univalent Lcat structures

Let C be a univalent Lcat structure.

T I E

A

O

• Any two terms
x : CO, f : CA(x, x) ⊢ i, j : CIx(f) are
indiscernible.

→ Each CIx(f) is a proposition.
→ Similarly, each CTx,y,z(f, g, h), CEx,y(f, g)

is a proposition.
• In the axioms for a category, we have that E behaves like

equality (is reflexive and a congruence for T, I, E.)
→ Univalence at A means that f = g is equivalent to CEx,y(f, g).
→ CA(x, y) is a set.
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Univalent Lcat structures
• The indiscernibilities between a, b : CO consist of

• ϕx• : CA(x, a) ∼= CA(x, b) for each x : CO
• ϕ•z : CA(a, z) ∼= CA(b, z) for each z : CO
• ϕ•• : CA(a, a) ∼= CA(b, b)
• The following for all appropriate w, x, y, z, f, g, h:

CTx,y,a(f, g, h) ↔ CTx,y,b(f, ϕy•(g), ϕx•(h)) CIa(f) ↔ CIb(ϕ••(f))

CTx,a,z(f, g, h) ↔ CTx,b,z(ϕx•(f), ϕ•z(g), h) CEx,a(f, g) ↔ CEx,b(ϕx•(f), ϕx•(g))

CTa,z,w(f, g, h) ↔ CTb,z,w(ϕ•z(f), g, ϕ•w(h)) CEa,x(f, g) ↔ CEb,x(ϕ•x(f), ϕ•x(g))

CTx,a,a(f, g, h) ↔ CTx,b,b(ϕx•(f), ϕ••(g), ϕx•(h)) CEa,a(f, g) ↔ CEb,b(ϕ••(f), ϕ••(g))

CTa,x,a(f, g, h) ↔ CTb,x,b(ϕ•x(f), ϕx•(g), ϕ••(h))

CTa,a,x(f, g, h) ↔ CTb,b,x(ϕ••(f), ϕ•x(g), ϕ•x(h))

CTa,a,a(f, g, h) ↔ CTb,b,b(ϕ••(f), ϕ••(g), ϕ••(h))

• But this an isomorphism in the usual categorical sense.

→ Univalence at O means that x = y is equivalent to x ∼= y.

→ cf. Complete Segal spaces
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The right notion of equivalence
Main theorem
For two univalent L-structures S, T ,

(S =L−Str T ) ≃ (S ∼=L−Str T ) ≃ (S ∼=∗
L−Str T ) ≃ (S ↠ T )

where ∼=∗
L−Str denotes levelwise equivalence up to indiscernbility

and ↠ denotes a very split surjective morphism.

Very surjective morphisms of Lcat-structures
A very surjective morphism or equivalence F : C ≃ D of
Lcat-structures consists of surjections
• FO : CO ↠ DO
• FA : CA(x, y)DA(Fx, Fy) for every x, y : CO
• FT : CT (f, g, h)DT (Ff, Fg, Fh) for all

f : CA(x, y), g : CA(y, z), h : CA(x, z)

• FE : for all f, g : CA(x, y)

• FI : CI(f)DI(Ff) for all f : CA(x, x)
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Summary

For every signature L, we have
• a notion of structure,
• a notion of indiscernibility within each sort,
• a notion of univalent structures,
• a notion of equivalence,
• a univalence theorem.

The paper includes examples of
• †-categories,
• profunctors,
• bicategories,
• opetopic bicategories,
• double bicategories,
• ...
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Current and future work

• Drop the splitness condition for certain structures.
• Extend to infinite structures.
• Formulate an analogue to the Rezk completion.
• Translate the theory into one about structures which can

include explicit functions.
• Explore mathematics within examples.
• Give a model-category-theoretic account.
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Thank you!
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