The univalence principle

Paige Randall North

Universiteit Utrecht

19 April 2024

1 Background on type theory and univalent foundations

2 The univalence principle¹

¹jww Ahrens, Shulman, Tsementzis

1 Background on type theory and univalent foundations

2 The univalence principle²

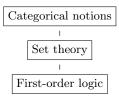
²jww Ahrens, Shulman, Tsementzis

- 1970s: Martin-Löf introduces his type theory
 - As a self-sufficient foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

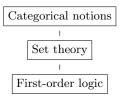
Classical mathematics:



- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

Classical mathematics:

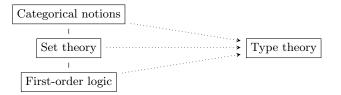
Mathematics à la Martin-Löf:



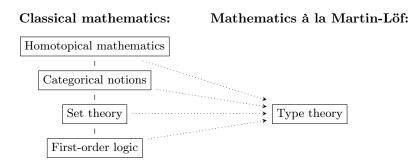
Type theory

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

Classical mathematics: Mathematics à la Martin-Löf:

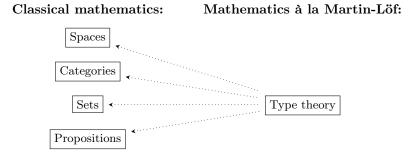


- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification



What does type theory look like?

- In mathematics, statements look like the following:
 - Consider a natural number n. The sum n + n is even.
 - Consider a space X. The cone on X is contractible.
- In type theory, we write this as
 - $n: \mathbb{N} \vdash e(n): \mathsf{isEven}(n+n)$
 - $X : \text{Spaces} \vdash c(X) : \text{isContr}(CX)$



Types	Terms	Product	Equality
Propositions	proofs	\wedge	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	\sim

Types	Terms	Product	Equality
Propositions	proofs	\wedge	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	\sim

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)

Types	Terms	Product	Equality
Propositions	proofs	\wedge	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	\sim

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)
- Mathematics in type theory
 - + Interpretation into Xs where equality is interpreted by $Y \rightsquigarrow$ Mathematics in Xs up to Y

Different notions of equality

Synthetic vs. analytic equalities

In type theory with the equality type, we always have a ("synthetic") equality type between a, b : D

 $a =_D b.$

Depending on the type D, we might also have a type of "analytic" equalities

 $a \simeq_D b.$

A univalence principle for this D and this \simeq_D states that

$$(a =_D b) \to (a \simeq_D b)$$

is an equivalence.

Identity of indiscernibles

$$(a = b) \leftarrow \big(\forall P.P(a) \leftrightarrow P(b) \big)$$

Identity of indiscernibles

$$(a = b) \leftrightarrow \big(\forall P.P(a) \leftrightarrow P(b) \big)$$

Identity of indiscernibles

$$(a =_D b) \leftrightarrow \left(\prod_{P: D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

Identity of indiscernibles

Leibniz: two things are equal when they are *indiscernible* (have the same properties).

$$(a =_D b) \leftrightarrow \left(\prod_{P: D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

• This holds in type theory.

Identity of indiscernibles

$$(a =_D b) \leftrightarrow \left(\prod_{P:D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

- This holds in type theory.
- Given a univalence principle $(a =_D b) \simeq (a \simeq_D b)$, we find an equivalence principle:

$$(a \simeq_D b) \to \left(\prod_{P:D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

Univalence

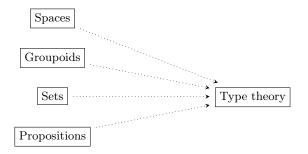
- We've seen that equality in type theory can be interpreted as notions weaker than classical equality (e.g. isomorphism, paths).
- Voevodsky imported weakness for equality from the interpretation in spaces into type theory by imposing the *Univalence Axiom* (UA):

The canonical function $(A =_{\mathsf{Type}} B) \to (A \simeq B)$ is an equivalence of types, for any types A and B.

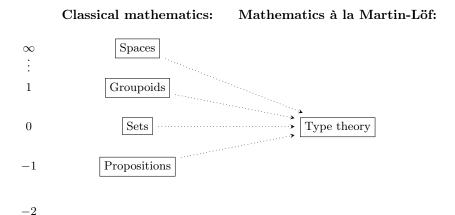
- UA is validated by the interpretation into spaces, but not into propositions, sets, or groupoids.
- Instead we **internalize** these notions.

Internalization of classical mathematics into type theory

Classical mathematics: Mathematics à la Martin-Löf:



Internalization of classical mathematics into type theory



How to think about homotopy type theory

- Internal language for higher toposes, in particular spaces
- Basic elements are objects, fibrations, sections
- Everything is invariant under homotopy; only have access to strict equality via sections

How to think about homotopy type theory

- Internal language for higher toposes, in particular spaces
- Basic elements are objects, fibrations, sections
- Everything is invariant under homotopy; only have access to strict equality via sections
- Thus difficult to replicate 'classical' constructions
- But everything is invariant under homotopy

• If two types A, B are propositions,

 $(A\simeq B)\simeq (A\leftrightarrow B)$

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$(A =_{\operatorname{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects isomorphism of groups (or rings, etc).³

³Coquand-Danielsson 2013

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$(A =_{\operatorname{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects isomorphism of groups (or rings, etc).³

• For *univalent* categories A, B,

$$(A =_{\text{UCat}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \simeq B)$$

so everything respects equivalence of univalent categories.⁴

³Coquand-Danielsson 2013

⁴Ahrens-Kapulkin-Shulman 2015, cf. 1-truncated complete Segal spaces

• Voevodsky dreamt of 'univalent mathematics' in which

$$(A =_{\mathbf{D}} B) \simeq (A \simeq_{\mathbf{D}} B)$$

where D is any type of mathematical object (propositions, sets, groups, categories, ∞ -categories, etc) and $\simeq_{\rm D}$ is the appropriate notion of 'sameness' for that type of objects.

• This would give us an appropriate language in which to study D.

⁵jww Ahrens, Shulman, Tsementzis

• Voevodsky dreamt of 'univalent mathematics' in which

$$(A =_{\mathbf{D}} B) \simeq (A \simeq_{\mathbf{D}} B)$$

where D is any type of mathematical object (propositions, sets, groups, categories, ∞ -categories, etc) and $\simeq_{\rm D}$ is the appropriate notion of 'sameness' for that type of objects.

- This would give us an appropriate language in which to study D.
- We⁵ realize this dream for 'finite' categorical structures.

⁵jww Ahrens, Shulman, Tsementzis

1 Background on type theory and univalent foundations

2 The univalence $principle^6$

⁶jww Ahrens, Shulman, Tsementzis

Signatures

EM1 Α $\mathcal{L}_{\mathsf{Group}}^{I}$ $\begin{array}{c} O \\ \mathcal{L}_{\mathsf{Proset}} \end{array}$ 0 T_2 L R3 I_2 EΗ $\mathbf{2}$ TE γ_2 T_1 I_1 1 C_1 Α $\downarrow\downarrow$ $\begin{array}{c} O \\ \mathcal{L}_{\mathsf{Cat}} \end{array}$ C_0 0 $\mathcal{L}_{\mathsf{biCat}}$

Structures

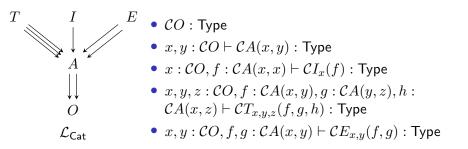
• Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.

Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.

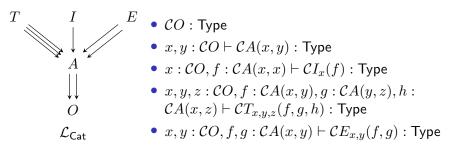
Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.
- An \mathcal{L}_{Cat} -structure \mathcal{C} consists of:



Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.
- An \mathcal{L}_{Cat} -structure \mathcal{C} consists of:



• Then we add axioms.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C}\cong_{\mathcal{L}_{\mathsf{Cat}}-\mathsf{Str}}\mathcal{D}$ consists of:
 - $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$
 - $x, y: \mathcal{C}O \vdash e_A: \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$
 - $x: \mathcal{CO}, f: \mathcal{CA}(x, x) \vdash e_I: \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_O x}(e_A f)$
 - $x, y, z : CO, f : CA(x, y), g : CA(y, z), h : CA(x, z) \vdash CT_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox, e_Oy, e_Oz}(e_A f, e_A g, e_A h)$
 - $x, y: \mathcal{CO}, f, g: \mathcal{CA}(x, y) \vdash \mathcal{CE}_{x, y}(f, g) \xrightarrow{\sim} \mathcal{CE}_{e_O x, e_O y}(e_A f, e_A g)$

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C}\cong_{\mathcal{L}_{\mathsf{Cat}}-\mathsf{Str}}\mathcal{D}$ consists of:
 - $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$

•
$$x, y: \mathcal{C}O \vdash e_A: \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$$

- $x: \mathcal{CO}, f: \mathcal{CA}(x, x) \vdash e_I: \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_O x}(e_A f)$
- $x, y, z : CO, f : CA(x, y), g : CA(y, z), h : CA(x, z) \vdash CT_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox, e_Oy, e_Oz}(e_A f, e_A g, e_A h)$
- $x, y: \mathcal{CO}, f, g: \mathcal{C}A(x, y) \vdash \mathcal{C}E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_O x, e_O y}(e_A f, e_A g)$

But this is not an equivalence of categories.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C}\cong_{\mathcal{L}_{\mathsf{Cat}}-\mathsf{Str}}\mathcal{D}$ consists of:
 - $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$

•
$$x, y: \mathcal{C}O \vdash e_A: \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$$

- $x: \mathcal{CO}, f: \mathcal{CA}(x, x) \vdash e_I: \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_O x}(e_A f)$
- $x, y, z : CO, f : CA(x, y), g : CA(y, z), h : CA(x, z) \vdash CT_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox, e_Oy, e_Oz}(e_A f, e_A g, e_A h)$

• $x, y: \mathcal{CO}, f, g: \mathcal{CA}(x, y) \vdash \mathcal{CE}_{x,y}(f, g) \xrightarrow{\sim} \mathcal{CE}_{e_O x, e_O y}(e_A f, e_A g)$ But this is not an equivalence of categories. And is it appropriate to call \mathcal{C}, \mathcal{D} categories?

Indiscernibility

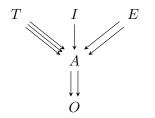
Definition

Given an \mathcal{L} -structure M, and an object S of \mathcal{L} , we say that two elements x, y : MS are *indiscernible* if substituting x for y in any object of \mathcal{L} that depends on (i.e. object with a morphism to) Sproduces equivalent types.

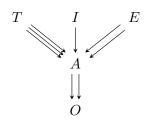
Definition

An \mathcal{L} -structure M is *univalent* if for any object S of \mathcal{L} , and any x, y: MS, the type of indiscernibilities between x and y is equivalent to the type of equalities between x and y.

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.

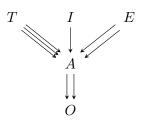


Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.



- Any two terms $x : \mathcal{CO}, f : \mathcal{C}A(x, x) \vdash i, j : \mathcal{C}I_x(f)$ are indiscernible.
- \rightarrow Each $\mathcal{C}I_x(f)$ is a proposition.
- \rightarrow Similarly, each $CT_{x,y,z}(f,g,h)$, $CE_{x,y}(f,g)$ is a proposition.

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.



- Any two terms $x : CO, f : CA(x, x) \vdash i, j : CI_x(f)$ are indiscernible.
- \rightarrow Each $\mathcal{C}I_x(f)$ is a proposition.
- \rightarrow Similarly, each $CT_{x,y,z}(f,g,h)$, $CE_{x,y}(f,g)$ is a proposition.
- In the axioms for a category, we have that E behaves like equality (is reflexive and a congruence for T, I, E.)
- \rightarrow Univalence at A means that f = g is equivalent to $CE_{x,y}(f,g)$.
- $\rightarrow CA(x,y)$ is a set.

• The indiscernibilities between a, b : CO consist of

• $\phi_{x\bullet} : CA(x, a) \cong CA(x, b)$ for each x : CO

• $\phi_{\bullet z} : CA(a, z) \cong CA(b, z)$ for each z : CO

•
$$\phi_{\bullet\bullet} : CA(a,a) \cong CA(b,b)$$

• The following for all appropriate w, x, y, z, f, g, h:

 $CT_{x,y,a}(f,g,h) \leftrightarrow CT_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h))$ $CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h)$ $CT_{a,z,w}(f,g,h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h))$ $CT_{x,a,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet \bullet}(g),\phi_{x\bullet}(h))$ $CT_{a,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet \bullet}(h))$ $CT_{a,a,x}(f,g,h) \leftrightarrow CT_{b,b,x}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))$ $CT_{a,a,a}(f,g,h) \leftrightarrow CT_{b,b,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet \bullet}(g),\phi_{\bullet \bullet}(h))$

 $CI_{a}(f) \leftrightarrow CI_{b}(\phi_{\bullet\bullet}(f))$ $CE_{x,a}(f,g) \leftrightarrow CE_{x,b}(\phi_{x\bullet}(f),\phi_{x\bullet}(g))$ $CE_{a,x}(f,g) \leftrightarrow CE_{b,x}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g))$ $CE_{a,a}(f,g) \leftrightarrow CE_{b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g))$

• The indiscernibilities between a, b : CO consist of

• $\phi_{x\bullet} : CA(x, a) \cong CA(x, b)$ for each x : CO

• $\phi_{\bullet z} : CA(a, z) \cong CA(b, z)$ for each z : CO

•
$$\phi_{\bullet\bullet}: \mathcal{C}A(a,a) \cong \mathcal{C}A(b,b)$$

• The following for all appropriate w, x, y, z, f, g, h:

 $\begin{aligned} & CT_{x,y,a}(f,g,h) \leftrightarrow CT_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h)) \\ & CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h) \\ & CT_{a,z,w}(f,g,h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h)) \\ & CT_{x,a,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet \bullet}(g),\phi_{x\bullet}(h)) \\ & CT_{a,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet \bullet}(h)) \\ & CT_{a,a,x}(f,g,h) \leftrightarrow CT_{b,b,x}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h)) \\ & CT_{a,a,a}(f,g,h) \leftrightarrow CT_{b,b,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet \bullet}(h)) \end{aligned}$

$$CI_{a}(f) \leftrightarrow CI_{b}(\phi_{\bullet\bullet}(f))$$

$$CE_{x,a}(f,g) \leftrightarrow CE_{x,b}(\phi_{\star\bullet}(f),\phi_{\star\bullet}(g))$$

$$CE_{a,x}(f,g) \leftrightarrow CE_{b,x}(\phi_{\bullet\star}(f),\phi_{\bullet\star}(g))$$

$$CE_{a,a}(f,g) \leftrightarrow CE_{b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g))$$

- But this an isomorphism in the usual categorical sense.
- \rightarrow Univalence at O means that x = y is equivalent to $x \cong y$.
- $\rightarrow\,$ cf. Complete Segal spaces

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: CA(x, y) \twoheadrightarrow DA(Fx, Fy)$ for every x, y: CO
- $FT : CT(f, g, h) \twoheadrightarrow DT(Ff, Fg, Fh)$ for all f : CA(x, y), g : CA(y, z), h : CA(x, z)
- $FE: \mathcal{C}E(f,g) \twoheadrightarrow \mathcal{D}E(Ff,Fg)$ for all $f,g: \mathcal{C}A(x,y)$
- $FI : CI(f) \twoheadrightarrow DI(Ff)$ for all f : CA(x, x)

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\mathrm{cat}}\text{-}\mathrm{structures}$

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: CA(x, y) \twoheadrightarrow DA(Fx, Fy)$ for every x, y: CO
- $FT : CT(f, g, h) \twoheadrightarrow DT(Ff, Fg, Fh)$ for all f : CA(x, y), g : CA(y, z), h : CA(x, z)
- $FE: \mathcal{C}E(f,g) \twoheadrightarrow \mathcal{D}E(Ff,Fg)$ for all $f,g: \mathcal{C}A(x,y)$
- $FI : CI(f) \twoheadrightarrow DI(Ff)$ for all f : CA(x, x)

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\mathrm{cat}}\text{-}\mathrm{structures}$

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: CA(x, y) \twoheadrightarrow DA(Fx, Fy)$ for every x, y: CO
- $FT : CT(f, g, h) \leftrightarrow \mathcal{D}T(Ff, Fg, Fh)$ for all f : CA(x, y), g : CA(y, z), h : CA(x, z)
- $FE: \mathcal{C}E(f,g) \leftrightarrow \mathcal{D}E(Ff,Fg)$ for all $f,g: \mathcal{C}A(x,y)$
- $FI: \mathcal{C}I(f) \leftrightarrow \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x, x)$

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\mathrm{cat}}\text{-}\mathrm{structures}$

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: CA(x, y) \twoheadrightarrow DA(Fx, Fy)$ for every x, y: CO
- $FT : CT(f, g, h) \leftrightarrow \mathcal{D}T(Ff, Fg, Fh)$ for all f : CA(x, y), g : CA(y, z), h : CA(x, z)
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all f, g: CA(x, y)
- $FI : CI(f) \leftrightarrow DI(Ff)$ for all f : CA(x, x)

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-Str}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of $\mathcal{L}_{\mathrm{cat}}\text{-}\mathrm{structures}$

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: CA(x,y) \cong DA(Fx,Fy)$ for every x, y: CO
- $FT : CT(f, g, h) \leftrightarrow \mathcal{D}T(Ff, Fg, Fh)$ for all f : CA(x, y), g : CA(y, z), h : CA(x, z)
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all f, g: CA(x, y)
- $FI : CI(f) \leftrightarrow DI(Ff)$ for all f : CA(x, x)

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

The paper includes examples of

- †-categories,
- profunctors,
- bicategories,
- opetopic bicategories,
- double bicategories,

Current and future work

- Drop the splitness condition for certain structures.
- Extend to infinite structures.
- Formulate an analogue to the Rezk completion.
- Translate the theory into one about structures which can include explicit functions.
- Explore mathematics within examples.
- Give a model-category-theoretic account.

Thank you!