Type theory and concurrency: directed homotopy type theory

Paige North

Ohio State University

17 March 2018

Goal

Goal

To develop a logic for directed homotopy theory

To prove theorems about concurrent processes

Homotopy type theory

HoTT

A logic for homotopy theory.

Basic objects of the language

Dependent types:

 $b: B \vdash E(b) \text{ TYPE} \quad \rightsquigarrow \quad \begin{cases} E \\ fibration \pi \\ B \end{cases}$

Dependent terms:

$$b: B \vdash e(b): E(b) \quad \rightsquigarrow \quad \text{section } e \left(\begin{array}{c} E \\ \downarrow \\ \downarrow \\ B \end{array} \right)$$

Homotopy type theory

Type formers

Usually postulate that certain types can be formed: e.g., from $b: B \vdash E(b)$ and $b: B \vdash F(b)$ can form

- the coproduct $b : B \vdash E(b) + F(b)$,
- the hom-type $b: B \vdash E(b) \rightarrow F(b)$.

As in category theory: we postulate that objects with certain universal properties exist.

The surprising type former

The identity type

Equality is defined in this language by a universal property:

 For b : B ⊢ E(b), we define a new type b : B ⊢ Id_b(E) to be the smallest reflexive relation on E.

$$b: B \vdash \epsilon_0 \times \epsilon_1 : \mathsf{Id}_b(E) \to E(b) \times E(b)$$
$$b: B \vdash r(b): E(b) \to \mathsf{Id}_b(E)$$

• We think of terms $b : B \vdash p(b) : Id_b(E)$ as being an equality $\epsilon_0(pb) = \epsilon_1(pb)$

This makes equality weaker than usual set-theoretic equality.

- Easier for a computer to handle.
- The definition says that $Id_b(E)$ is a (very good) path object:

$$E(b) \xrightarrow{r} \operatorname{Id}_{b}(E) \xrightarrow{\epsilon_{0} \times \epsilon_{1}} E(b) \times E(b)$$

Why HoTT?

It's a logic for homotopy theory.

Theorem (N)

Let $\ensuremath{\mathcal{C}}$ be a finitely complete category.

The category of models¹ of type theory with Id types in $\mathcal C$ is equivalent to the category of weak factorization systems $(\mathcal L,\mathcal R)$ on $\mathcal C$ where

- 1. every map to the terminal object is in $\ensuremath{\mathcal{R}}$ and
- 2. \mathcal{L} is stable under pullback along \mathcal{R} .

¹display map categories

Why HoTT?

- It's a logic for homotopy theory.
- Which can be used for formal verification on a computer.

Example: reversing paths

Thm: Paths are reversible.

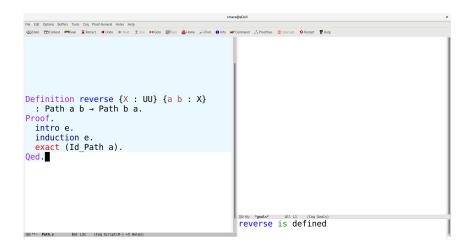
A categorical proof: Given a very good path object

$$X \xrightarrow{r} \operatorname{Path}(X) \xrightarrow{\epsilon_0 \times \epsilon_1} X \times X$$
,

we get a solution to the following lifting problem.

$$\begin{array}{c|c} X & \xrightarrow{r} & \mathsf{Path}(X) \\ \downarrow & \swarrow & \downarrow \\ \downarrow & \swarrow & \downarrow \\ \mathsf{Path}(X) & \xrightarrow{\epsilon_1 \times \epsilon_0} & X \times X \end{array}$$

A type theoretic proof in the computer:



Why HoTT?

- It's a logic for homotopy theory.
- Which can be used for formal verification on a computer.
- Everything is invariant under homotopy: for every b : B ⊢ E(b), for every a, b : B, there is a function

transport :
$$E(a) \times Id(a, b) \rightarrow E(b)$$
.

Example: contractibility

Given $b : B \vdash E(b)$, define $b : B \vdash \text{isContr}(Eb)$ (type of contractions of Eb).

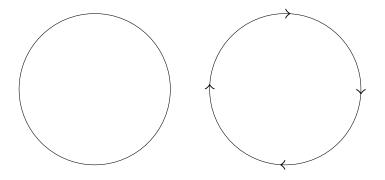
If there is a contraction c : isContr(*Ea*) and a path p : Id(a, b), then there is a contraction transport(c, p) : isContr(*Eb*).

```
Even true for T : TYPE \vdash isContr(T).
```

Directed spaces

Rough definition

A directed space is a space together with a subset of its paths which are marked as *directed*.



Directed spaces and concurrency

Concurrent processes can be represented by directed spaces.

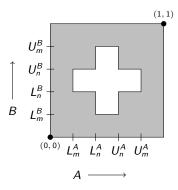


Figure: The Swiss flag

Fundamental question:

Which states are safe? Which states are reachable?

Design criteria for directed HoTT

- A logic for directed homotopy theory
 - Same underlying syntax as HoTT
 - With a new type former hom(-) whose terms represent directed paths
- Which can be used for formal verification on a computer.
- Where everything is covariant with directed homotopy: for every b : B ⊢ E(b), for every a, b : B, there is a function

transport : $E(a) \times hom(a, b) \rightarrow E(b)$.

Example: reachability

Given $* \vdash D$, define $d : D \vdash \text{Reach}(d)$ (type of ways to reach d from the initial point).

If there is a r: Reach(d) and a directed path p: hom(d, e), then there is a transport(r, p): Reach(e).

Rules for directed HoTT

$$\frac{\Gamma \vdash T : \mathcal{U}}{\Gamma \vdash T^{core} : \mathcal{U}} \qquad \frac{\Gamma \vdash T : \mathcal{U}}{\Gamma \vdash T^{op} : \mathcal{U}} \qquad \frac{\Gamma \vdash T : \mathcal{U} \quad \Gamma \vdash t : T^{core}}{\Gamma \vdash \iota t : T} \qquad \frac{\Gamma \vdash T : \mathcal{U} \quad \Gamma \vdash t : T^{core}}{\Gamma \vdash \iota^{op} t : T^{op}}$$

$$\frac{\Gamma \vdash T : \mathcal{U} \quad \Gamma \vdash s : T^{op} \quad \Gamma \vdash t : T}{\Gamma \vdash \hom_{T}(s, t) : \mathcal{U}} \qquad \frac{\Gamma \vdash T : \mathcal{U} \quad \Gamma \vdash t : T^{core}}{\Gamma \vdash \iota t : \hom_{T}(\iota^{op} t, \iota) : \mathcal{U}}$$

$$\begin{array}{c|c} \Gamma \vdash \mathcal{T} : \mathcal{U} & \Gamma, s : \mathcal{T}^{\text{core}}, t : \mathcal{T}, f : \hom_{\mathcal{T}}(\iota^{\text{op}}s, t) \vdash D(f) : \mathcal{U} & \Gamma, s : \mathcal{T}^{\text{core}} \vdash d(s) : D(1_s) \\ \hline & \Gamma, s : \mathcal{T}^{\text{core}}, t : \mathcal{T}, f : \hom_{\mathcal{T}}(\iota^{\text{op}}s, t) \vdash \delta_r(d, f) : D(f) \end{array}$$

$$\frac{\Gamma \vdash T: \mathcal{U} \qquad \Gamma, s: T^{\mathsf{op}}, t: T^{\mathsf{core}}, f: \hom_{T}(s, \iota t) \vdash D(f): \mathcal{U} \qquad \Gamma, s: T^{\mathsf{core}} \vdash d(s): D(1_{s})}{\Gamma, s: T^{\mathsf{op}}, t: T^{\mathsf{core}}, f: \hom_{T}(s, \iota t) \vdash \delta_{\ell}(d, f): D(f)}$$

$$\label{eq:rescaled_$$

$$\frac{\Gamma \vdash \mathcal{T}: \mathcal{U} \qquad \Gamma, s: \mathcal{T}^{\mathsf{op}}, t: \mathcal{T}^{\mathsf{core}}, f: \hom_{\mathcal{T}}(s, \iota t) \vdash D(f): \mathcal{U} \qquad \Gamma, s: \mathcal{T}^{\mathsf{core}} \vdash d(s): D(1_{s})}{\Gamma, s: \mathcal{T}^{\mathsf{core}} \vdash \delta_{\ell}(d, 1_{s}) \equiv d(s): D(1_{s})}$$

A model in categories

 There is a weak factorization system (L, R) in Cat enrichedly cofibrantly generated by the inclusion of the domain into a morphism.

$$0 \hookrightarrow (0 \to 1)$$

- The usual functor hom : C^{op} × C → Set becomes a Grothendieck opfibration π : hom(C) → C^{op} × C, which is in R.
- There is a functor $ob\mathcal{C} \to hom^{=}(\mathcal{C})$ which is in \mathcal{L} .

 The rules above axiomatize the lifitng property that these maps (and other maps of the wfs) have against each other.

Summary & future work

Summary

We have:

- a type theory for directed paths
- with a model in Cat.

Summary

We need:

- to integrate this into old HoTT (i.e. have Id and hom in the same theory);
- to find a model in a category of directed spaces;
- to find models in all categories of directed spaces.

Thank you!