The univalence principle

Paige Randall North

Utrecht University

25 April 2024

1 [Background on type theory and univalent foundations](#page-2-0)

2 [The univalence principle](#page-32-0)¹

¹ jww Ahrens, Shulman, Tsementzis

Outline

1 [Background on type theory and univalent foundations](#page-2-0)

2 [The univalence principle](#page-32-0)²

² jww Ahrens, Shulman, Tsementzis

- 1970s: Martin-Löf introduces his type theory
	- As a self-sufficient foundation of mathematics
	- Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
	- As a self-sufficient foundation of mathematics
	- Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
	- As a self-sufficient foundation of mathematics
	- Well-suited for machine verification

Classical mathematics:

• 1970s: Martin-Löf introduces his type theory

- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics: Mathematics à la Martin-Löf:

• 1970s: Martin-Löf introduces his type theory

- As a self-sufficient foundation of mathematics
- Well-suited for machine verification

Classical mathematics: Mathematics à la Martin-Löf:

- 1970s: Martin-Löf introduces his type theory
	- As a self-sufficient foundation of mathematics
	- Well-suited for machine verification

• Everything in type theory respects equality

- Everything in type theory respects equality
- Mathematics in type theory
	- $+$ Interpretation into Xs where equality is interpreted by Y
	- \rightsquigarrow Mathematics in Xs up to Y

- Everything in type theory respects equality
- Mathematics in type theory
	- $+$ Interpretation into Xs where equality is interpreted by Y
	- \rightsquigarrow Mathematics in Xs up to Y

- Everything in type theory respects equality
- Mathematics in type theory
	- $+$ Interpretation into Xs where equality is interpreted by Y
	- \rightsquigarrow Mathematics in Xs up to Y

- Everything in type theory respects equality
- Mathematics in type theory
	- $+$ Interpretation into Xs where equality is interpreted by Y
	- \rightsquigarrow Mathematics in Xs up to Y

Different notions of equality

Synthetic vs. analytic equalities

In type theory with the equality type, we always have a ("synthetic") equality type between $a, b : D$

 $a = D b$.

Depending on the type D , we might also have a type of "analytic" equalities

 $a \simeq_D b$.

A univalence principle for this D and this \simeq_D states that

$$
(a =_D b) \to (a \simeq_D b)
$$

is an equivalence.

Identity of indiscernibles

$$
(a = b) \leftarrow (\forall P.P(a) \leftrightarrow P(b))
$$

Identity of indiscernibles

$$
(a = b) \leftrightarrow (\forall P.P(a) \leftrightarrow P(b))
$$

Identity of indiscernibles

$$
(a =_D b) \leftrightarrow \left(\prod_{P:D \to \text{Type}} P(a) \simeq P(b)\right)
$$

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the same properties).

$$
(a =_D b) \leftrightarrow \left(\prod_{P:D \to \text{Type}} P(a) \simeq P(b)\right)
$$

• This holds in type theory.

Identity of indiscernibles

$$
(a =_D b) \leftrightarrow \left(\prod_{P:D \rightarrow \text{Type}} P(a) \simeq P(b)\right)
$$

- This holds in type theory.
- Given a univalence principle $(a =_D b) \simeq (a \simeq_D b)$, we find an equivalence principle:

$$
(a \simeq_D b) \to \left(\prod_{P:D \to \text{Type}} P(a) \simeq P(b)\right).
$$

Univalence

- We've seen that equality in type theory can be interpreted as notions weaker than classical equality (e.g. isomorphism, paths).
- Voevodsky imported weakness for equality from the interpretation in spaces into type theory by imposing the Univalence Axiom (UA):

The canonical function $(A =_{\text{Type}} B) \rightarrow (A \simeq B)$ is an equivalence of types, for any types A and B.

- UA is validated by the interpretation into spaces, but not into propositions, sets, or groupoids.
- Instead we **internalize** these notions.

Internalization of classical mathematics into type theory

Classical mathematics: Mathematics à la Martin-Löf:

Internalization of classical mathematics into type theory

• If two types A, B are propositions,

```
(A \simeq B) \simeq (A \leftrightarrow B)
```
• If two types A, B are propositions,

$$
(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

• If two types A, B are propositions,

$$
(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$
(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)
$$

so everything respects bijection of sets.

• If two types A, B are propositions,

$$
(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$
(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)
$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$
(A =_{\text{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)
$$

so everything respects isomorphism of groups (or rings, etc).³

³Coquand-Danielsson 2013

• If two types A, B are propositions,

$$
(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)
$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$
(A =_{\text{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)
$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$
(A =_{\text{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)
$$

so everything respects isomorphism of groups (or rings, etc).³

• For univalent categories A, B ,

$$
(A =_{\text{UCat}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \simeq B)
$$

so everything respects equivalence of univalent categories.⁴

³Coquand-Danielsson 2013

⁴Ahrens-Kapulkin-Shulman 2015

• Voevodsky dreamt of 'univalent mathematics' in which

$$
(A =_D B) \simeq (A \simeq_D B)
$$

where D is any type of mathematical object (propositions, sets, groups, categories, ∞ -categories, etc) and $\simeq_{\mathcal{D}}$ is the appropriate notion of 'sameness' for that type of objects.

• This would give us an appropriate language in which to study D.

Outline

1 [Background on type theory and univalent foundations](#page-2-0)

2 [The univalence principle](#page-32-0)⁵

⁵ jww Ahrens, Shulman, Tsementzis

Signatures

• Morally, an $\mathcal{L}\text{-structure}$ for a signature $\mathcal L$ is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.

- Morally, an $\mathcal{L}\text{-structure}$ for a signature $\mathcal L$ is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an $\mathcal{L}\text{-structure}$ fiberwise.

- Morally, an $\mathcal{L}\text{-structure}$ for a signature $\mathcal L$ is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an $\mathcal{L}\text{-structure}$ fiberwise.
- An $\mathcal{L}_{\mathsf{Cat}}$ -structure $\mathcal C$ consists of:

- Morally, an $\mathcal{L}\text{-structure}$ for a signature $\mathcal L$ is a Reedy fibrant diagram $\mathcal{L} \rightarrow$ Type.
- In type theory, we define an $\mathcal{L}\text{-structure}$ fiberwise.
- An $\mathcal{L}_{\mathsf{Cat}}$ -structure $\mathcal C$ consists of:

Then we add axioms.

Proposition

For two \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T)
$$

where \cong _{$\mathcal{L}-$ Str} denotes levelwise equivalence.

Proposition

For two $\mathcal{L}\text{-structures } S, T$,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T)
$$

where \cong _{ζ –Str} denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{C} \to \mathsf{Str}} \mathcal{D}$ consists of:
	- $e_O : CO \xrightarrow{\sim} DO$
	- $x, y : \mathcal{CO} \vdash e_A : \mathcal{CA}(x, y) \xrightarrow{\sim} \mathcal{D}(e_Ox, e_Oy)$
	- $x : \mathcal{CO}, f : \mathcal{CA}(x, x) \vdash e_I : \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_Ox}(e_A f)$
	- $x, y, z : \mathcal{CO}, f : \mathcal{CA}(x, y), g : \mathcal{CA}(y, z), h : \mathcal{CA}(x, z) \vdash$ $\overbrace{CT_{x,y,z}(f,g,h)}^{\sim} \overset{\sim}{\rightarrow} \overbrace{DT_{e_ox,e_oy,e_oz}(e_Af,e_Ag,e_Ah)}^{\sim}$
	- $x, y : CO, f, g : CA(x, y) \vdash \mathcal{C}E_{x,y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_{O}x, e_{O}y}(e_Af, e_Ag)$

Proposition

For two $\mathcal{L}\text{-structures } S, T$,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T)
$$

where \cong _{ζ –Str} denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{C} \to \mathsf{Str}} \mathcal{D}$ consists of:
	- $e_O : CO \xrightarrow{\sim} DO$
	- $x, y : \mathcal{CO} \vdash e_A : \mathcal{CA}(x, y) \xrightarrow{\sim} \mathcal{D}(e_Ox, e_Oy)$
	- $x : \mathcal{CO}, f : \mathcal{CA}(x, x) \vdash e_I : \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_Ox}(e_A f)$
	- $x, y, z : \mathcal{CO}, f : \mathcal{CA}(x, y), q : \mathcal{CA}(y, z), h : \mathcal{CA}(x, z) \vdash$ $\overbrace{CT_{x,y,z}(f,g,h)}^{\sim} \overset{\sim}{\rightarrow} \overbrace{DT_{e_ox,e_oy,e_oz}(e_Af,e_Ag,e_Ah)}^{\sim}$
	- $x, y : CO, f, g : CA(x, y) \vdash \mathcal{C}E_{x,y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_{O}x, e_{O}y}(e_Af, e_Ag)$

But this is not an equivalence of categories.

Proposition

For two $\mathcal{L}\text{-structures } S, T$,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T)
$$

where \cong _{ζ –Str} denotes levelwise equivalence.

- A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{\mathsf{Cat}} \mathsf{Str}} \mathcal{D}$ consists of:
	- $e_O : CO \xrightarrow{\sim} DO$
	- $x, y : \mathcal{CO} \vdash e_A : \mathcal{CA}(x, y) \xrightarrow{\sim} \mathcal{D}(e_Ox, e_Oy)$
	- $x : \mathcal{CO}, f : \mathcal{CA}(x, x) \vdash e_I : \mathcal{CI}_x(f) \xrightarrow{\sim} \mathcal{DI}_{e_Ox}(e_A f)$
	- $x, y, z : \mathcal{CO}, f : \mathcal{CA}(x, y), q : \mathcal{CA}(y, z), h : \mathcal{CA}(x, z) \vdash$ $\overbrace{CT_{x,y,z}(f,g,h)}^{\sim} \overset{\sim}{\rightarrow} \overbrace{DT_{e_ox,e_oy,e_oz}(e_Af,e_Ag,e_Ah)}^{\sim}$
	- $x, y : CO, f, g : CA(x, y) \vdash \mathcal{C}E_{x,y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_{O}x, e_{O}y}(e_Af, e_Ag)$

But this is not an equivalence of categories. And is it appropriate to call \mathcal{C}, \mathcal{D} categories?

Indiscernibility

Definition

Given an $\mathcal{L}\text{-structure }M$, and an object S of \mathcal{L} , we say that two elements $x, y : MS$ are *indiscernible* if substituting x for y in any object of $\mathcal L$ that depends on (i.e. object with a morphism to) S produces equivalent types.

Definition

An $\mathcal{L}\text{-structure }M$ is univalent if for any object S of $\mathcal{L}\text{, and any}$ $x, y : MS$, the type of indiscernibilities between x and y is equivalent to the type of equalities between x and y .

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.

- Any two terms $x : \mathcal{CO}, f : \mathcal{CA}(x, x) \vdash i, j : \mathcal{CI}_x(f)$ are indiscernible.
- \rightarrow Each $CI_x(f)$ is a proposition.
- \rightarrow Similarly, each $CT_{x,y,z}(f, g, h)$, $CE_{x,y}(f, g)$ is a proposition.

Let C be a univalent \mathcal{L}_{cat} structure.

- Any two terms $x : \mathcal{CO}, f : \mathcal{CA}(x, x) \vdash i, j : \mathcal{CI}_x(f)$ are indiscernible.
- \rightarrow Each $CI_x(f)$ is a proposition.
- \rightarrow Similarly, each $CT_{x,y,z}(f,g,h)$, $CE_{x,y}(f,g)$ is a proposition.
- In the axioms for a category, we have that E behaves like equality (is reflexive and a congruence for T, I, E .)
- \rightarrow Univalence at A means that $f = g$ is equivalent to $CE_{x,y}(f, g)$.
- \rightarrow $CA(x, y)$ is a set.

- The indiscernibilities between a, b : CO consist of
	- $\phi_{x\bullet} : \mathcal{C}A(x,a) \cong \mathcal{C}A(x,b)$ for each $x : \mathcal{C}O$
	- $\phi_{\bullet z} : CA(a, z) \cong CA(b, z)$ for each $z : CO$
	- $\phi_{\bullet \bullet} : CA(a, a) \cong CA(b, b)$
	- The following for all appropriate w, x, y, z, f, g, h :

 $CT_{x,y,a}(f, q, h) \leftrightarrow CT_{x,y,b}(f, \phi_{y\bullet}(q), \phi_{x\bullet}(h))$ $CI_a(f) \leftrightarrow CI_b(\phi_{\bullet\bullet}(f))$ $CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h)$ $CE_{x,a}(f,g) \leftrightarrow CE_{x,b}(\phi_{x\bullet}(f),\phi_{x\bullet}(g))$ $CT_{a,z,w}(f,g,h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h))$ $CE_{a,x}(f,g) \leftrightarrow CE_{b,x}(\phi_{\bullet x}(f),\phi_{\bullet x}(g))$ $CT_{x,a,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet\bullet}(g),\phi_{x\bullet}(h))$ $CE_{a,a}(f,g) \leftrightarrow CE_{b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g))$ $CT_{a,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet\bullet}(h))$ $CT_{a,a,x}(f,q,h) \leftrightarrow CT_{b,b,x}(\phi_{\bullet\bullet}(f),\phi_{\bullet x}(q),\phi_{\bullet x}(h))$ $CT_{a,a,a}(f,g,h) \leftrightarrow CT_{b,b,b}(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h))$

- The indiscernibilities between a, b : CO consist of
	- $\phi_{x\bullet} : CA(x, a) \cong CA(x, b)$ for each $x : CO$
	- $\phi_{\bullet z} : CA(a, z) \cong CA(b, z)$ for each $z : CO$
	- $\phi_{\bullet \bullet} : CA(a, a) \cong CA(b, b)$
	- The following for all appropriate w, x, y, z, f, g, h :

 $CT_{x,y,a}(f, q, h) \leftrightarrow CT_{x,y,b}(f, \phi_{y\bullet}(q), \phi_{x\bullet}(h))$ $CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f), \phi_{\bullet z}(g), h)$ C $CT_{a,z,w}(f, q, h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f), q, \phi_{\bullet w}(h))$ \mathcal{C} $CT_{x,a,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet\bullet}(g),\phi_{x\bullet}(h))$ C $CT_{a,x,a}(f, q, h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f), \phi_{x\bullet}(q), \phi_{\bullet \bullet}(h))$ $CT_{a,a,x}(f,q,h) \leftrightarrow CT_{b,b,x}(\phi_{\bullet\bullet}(f),\phi_{\bullet x}(q),\phi_{\bullet x}(h))$ $CT_{a,a,a}(f,g,h) \leftrightarrow CT_{b,b,b}(\phi_{\bullet \bullet}(f), \phi_{\bullet \bullet}(g), \phi_{\bullet \bullet}(h))$

$$
\mathcal{C}I_a(f) \leftrightarrow \mathcal{C}I_b(\phi_{\bullet\bullet}(f))
$$

\n
$$
E_{x,a}(f,g) \leftrightarrow \mathcal{C}E_{x,b}(\phi_{x\bullet}(f), \phi_{x\bullet}(g))
$$

\n
$$
E_{a,x}(f,g) \leftrightarrow \mathcal{C}E_{b,x}(\phi_{\bullet x}(f), \phi_{\bullet x}(g))
$$

\n
$$
E_{a,a}(f,g) \leftrightarrow \mathcal{C}E_{b,b}(\phi_{\bullet\bullet}(f), \phi_{\bullet\bullet}(g))
$$

- But this an isomorphism in the usual categorical sense.
- \rightarrow Univalence at O means that $x = y$ is equivalent to $x \approx y$.

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO:CO \rightarrow DO$
- $FA:CA(x,y)\rightarrow DA(Fx,Fy)$ for every $x,y:CO$
- $FT: \mathcal{CT}(f, q, h) \rightarrow \mathcal{DT}(Ff, Fa, Fh)$ for all $f : \mathcal{C}A(x,y), q : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE : CE(f, q) \rightarrow DE(Ff, Fa)$ for all $f, q : CA(x, y)$
- $FI : CI(f) \rightarrow DI(Ff)$ for all $f : CA(x, x)$

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO:CO \rightarrow DO$
- $FA:CA(x,y)\rightarrow DA(Fx,Fy)$ for every $x,y:CO$
- $FT: \mathcal{CT}(f, q, h) \rightarrow \mathcal{DT}(Ff, Fa, Fh)$ for all $f : \mathcal{C}A(x,y), q : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE : CE(f, q) \rightarrow DE(Ff, Fa)$ for all $f, q : CA(x, y)$
- $FI : CI(f) \rightarrow DI(Ff)$ for all $f : CA(x, x)$

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO:CO \rightarrow DO$
- $FA:CA(x,y)\rightarrow DA(Fx,Fy)$ for every $x,y:CO$
- $FT: \mathcal{CT}(f, q, h) \leftrightarrow \mathcal{DT}(Ff, Fa, Fh)$ for all $f : CA(x, y), q : CA(y, z), h : CA(x, z)$
- $FE : \mathcal{C}E(f, q) \leftrightarrow \mathcal{D}E(Ff, Fq)$ for all $f, q : \mathcal{C}A(x, y)$
- $FI : CI(f) \leftrightarrow DI(Ff)$ for all $f : CA(x, x)$

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO:CO \rightarrow DO$
- $FA:CA(x,y) \rightarrow DA(Fx,Fy)$ for every $x, y:CO$
- $FT: \mathcal{CT}(f, q, h) \leftrightarrow \mathcal{DT}(Ff, Fa, Fh)$ for all $f : \mathcal{C}A(x,y), q : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all $f, g: CA(x, y)$
- $FI : CI(f) \leftrightarrow DI(Ff)$ for all $f : CA(x, x)$

Main theorem

For two *univalent* \mathcal{L} -structures S, T ,

$$
(S =_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}} T) \simeq (S \cong_{\mathcal{L}-\mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)
$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \rightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO:CO \rightarrow DO$
- $FA:CA(x,y) \cong DA(Fx,Fy)$ for every $x, y:CO$
- $FT:$ $CT(f, q, h) \leftrightarrow DT(Ff, Fg, Fh)$ for all $f : \mathcal{C}A(x,y), q : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: (f = g) \leftrightarrow (Ff = Fg)$ for all $f, g: CA(x, y)$
- $FI : CI(f) \leftrightarrow DI(Ff)$ for all $f : CA(x, x)$

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures.
- a notion of equivalence,
- a univalence theorem.

The paper includes examples of

- †-categories,
- profunctors,
- bicategories,
- opetopic bicategories,

Current and future work

- Drop the splitness condition for certain structures.
- Extend to infinite structures.
- Formulate an analogue to the Rezk completion.
- Translate the theory into one about structures which can include explicit functions.
- Explore mathematics within examples.
- Give a model-category-theoretic account.

Thank you!