
1/23

Univalent foundations and the equivalence
principle

Paige Randall North

16 October 2020

2/23

Outline

1 The equivalence principle

2 Univalent foundations

3 The equivalence principle in univalent foundations

3/23

The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.

Notion of equivalence depends on the objects under consideration:
• equal numbers, functions,. . .
• isomorphic sets, groups, rings,. . .
• equivalent categories
• biequivalent bicategories
• . . .

3/23

The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.

Notion of equivalence depends on the objects under consideration:
• equal numbers, functions,. . .
• isomorphic sets, groups, rings,. . .
• equivalent categories
• biequivalent bicategories
• . . .

4/23

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise
Find a statement about sets that is not invariant under isomorphism:

{;, {;}} ∼= {;, {{;}}}

{;} ∈ X

Exercise
Find a statement about categories that is not invariant under
equivalence:

•
##

cc • ' •

C has exactly 1 object.

4/23

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise
Find a statement about sets that is not invariant under isomorphism:

{;, {;}} ∼= {;, {{;}}}

{;} ∈ X

Exercise
Find a statement about categories that is not invariant under
equivalence:

•
##

cc • ' •

C has exactly 1 object.

5/23

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal
To have a syntactic criterion for properties and constructions that are
invariant under equivalence

5/23

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal
To have a syntactic criterion for properties and constructions that are
invariant under equivalence

6/23

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

6/23

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

6/23

How to break the equivalence principle for categories. . .

• Recall: the statement
The category C has exactly one object.

is not invariant under equivalence of categories.
• In general, referring to equality of objects breaks invariance,
but. . .

• even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then g ◦ f exists.”

Can we give a definition of category without using equality of objects?

7/23

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

7/23

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

7/23

. . . and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
• a set O of objects
• for each x,y ∈ O, a type/set A(x,y) of arrows
• for each x,y, z ∈ O and each f ∈ A(x,y) and g ∈ A(y, z), a type/set
g ◦ f ∈ A(x, z)

• for each x ∈ O, an identity idx ∈ A(x,x)
• . . .

Gives rise to dependently typed language by adding logical
connectors.

8/23

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?
• What about other mathematical structures?

8/23

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?

• What about other mathematical structures?

8/23

Invariance for statements

Theorem (Freyd ’76, Blanc ’78)
A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

• What about constructions on categories?
• What about other mathematical structures?

9/23

Outline

1 The equivalence principle

2 Univalent foundations

3 The equivalence principle in univalent foundations

10/23

Overview of types in Martin-Löf type theory

Type former Notation canonical term

Dependent type x : A ` B(x)

Dependent term x : A ` b(x) : B(x)

Boolean type Bool >,⊥

Natural numbers type Nat 0, sx

Sum type
∑

x:A B(x) (a,b)

Product type
∏

x:A B(x) λ(x : A).b

Identity type x : A,y : A ` x = y refl(x) : x = x

Universe Type

Curry-Howard Correspondence
We can interpret these types as propositions or sets.

11/23

Properties of the identity type

Induction principle for a= b
To define a function

f :
∏

(x,y:A)

∏

(p:x=y)

C(x,y,p)

it suffices to specify its image on (x,x, reflx).

• sym :
∏

x,y:A(x = y)→ (y = x)
• trans :

∏

x,y,z:A(x = y)× (y = z)→ (x = z)

12/23

The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A→ B.
• The predicate “G is an abelian group” is a function Grp→ Prop.
• Considering the lattice of subgroups of any group G produces a
function Grp→ Latt.

Equality principle
∏

x,y:A
(x = y)→

∏

f :A→B

�

f(x) = f(y)
�

13/23

Space interpretation

The identity type behaves like equality:
• reflexivity, symmetry, transitivity
• Everything respects equality

but more like paths in a space:
• Can iterate identity type
• Cannot show that any two identities are identical

Voevodsky Correspondence
We can interpret
• a type K as a Kan complex [K]
• a dependent type x : B ` E(b) as a Kan fibration [p] : [E]→ [B]
• a dependent term x : B ` e(b) : E(b) as a section of [e] of [p]
• a term p : a→K b as a path from a to b in K

14/23

The Univalence Axiom

There are two notions of ‘sameness’ between types:
• A= B
• A' B (functions f : A� B : g such that fg= 1 and gf = 1)

There is always a function

(A= B)→ (A' B)

which is an equivalence in Kan complexes.

The Univalence Axiom
The function

(A= B)→ (A' B)

is an equivalence.

This is true in Kan complexes.

15/23

Outline

1 The equivalence principle

2 Univalent foundations

3 The equivalence principle in univalent foundations

16/23

Strategy
We always have a version of the equivalence principle:

Equality principle
∏

x,y:A
(x = y)→

∏

f :A→B

�

f(x) = f(y)
�

but we want better ones where we replace the ‘synthetic’ equality x = y
with an ‘analytic’ equality x ∼= y which depends on the type.

Strategy: prove that the function (x = y)→ (x ∼= y) is an equivalence

Univalence principle
(x =T y)∼= (x ∼=T y)

for a type T and appropriate ∼=T. Then we will get:

Equivalence principle
∏

x,y:A
(x ∼= y)→

∏

f :A→B

�

f(x) = f(y)
�

17/23

Contractible types, propositions and sets

• A is contractible

isContr(A) :≡
∑

x:A

∏

y:A
y = x

• A is a proposition

isProp(A) :≡
∏

x,y:A
x = y

• A is a set

isSet(A) :≡
∏

x,y:A
isProp(x = y)

Prop :≡
∑

X:Type

isProp(X) Set :≡
∑

X:Type

isSet(X)

17/23

Contractible types, propositions and sets

• A is contractible

isContr(A) :≡
∑

x:A

∏

y:A
y = x

• A is a proposition

isProp(A) :≡
∏

x,y:A
isContr(x = y)

• A is a set

isSet(A) :≡
∏

x,y:A
isProp(x = y)

Prop :≡
∑

X:Type

isProp(X) Set :≡
∑

X:Type

isSet(X)

18/23

Univalence for Propositions and Sets

Immediate consequences of the univalence axiom:

Univalence for propositions
P=Prop Q ' P↔ Q

Univalence for sets
P=Set Q ' P∼= Q

19/23

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M
3. e : M
4. α : Π(a,b,c:M)µ(µ(a,b), c) = µ(a,µ(b, c))
5. λ : Π(a:M)µ(e,a) = a
6. ρ : Π(a:M)µ(a, e) = a

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is 1.–3.
• proof is 4.–6.

19/23

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M
3. e : M
4. α : Π(a,b,c:M)µ(µ(a,b), c) = µ(a,µ(b, c))
5. λ : Π(a:M)µ(e,a) = a
6. ρ : Π(a:M)µ(a, e) = a

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is 1.–3.
• proof is 4.–6.

19/23

Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M
3. e : M
4. α : Π(a,b,c:M)µ(µ(a,b), c) = µ(a,µ(b, c))
5. λ : Π(a:M)µ(e,a) = a
6. ρ : Π(a:M)µ(a, e) = a

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is 1.–3.
• proof is 4.–6.

20/23

Structure Identity Principle

Univalence for monoids

M =Monoid N ' M ∼= N

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
• groups, rings
• posets
• discrete fields
• sets with fixpoint operator

What about categories?

20/23

Structure Identity Principle

Univalence for monoids

M =Monoid N ' M ∼= N

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
• groups, rings
• posets
• discrete fields
• sets with fixpoint operator

What about categories?

21/23

Univalence for categories

We only have univalence for univalent categories: ones where the
canonical function A= B → A∼= B for objects A,B :C is an
equivalence.
Here, the homsets are sets, and the type of objects will be groupoids.

Univalence for univalent categories

C =UCat D ' C ' D

We also have univalence for other higher strucuters
(Ahrens-North-Shulman-Tsementzis):
• bicategories, tricategories, etc
• double categories
• dagger categories

22/23

Further resources

• HoTT Reading Group, 10:30-12 on Wednesdays
• HoTT Book

• https://homotopytypetheory.org/book/
• Learn how to write proofs in a computer!

• https://leanprover-community.github.io/learn.html
• (Number Game)

https://homotopytypetheory.org/book/
https://leanprover-community.github.io/learn.html

23/23

Thank you!

	The equivalence principle
	Univalent foundations
	The equivalence principle in univalent foundations

