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The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.
Notion of equivalence depends on the objects under consideration:
® equal numbers, functions,. ..
® isomorphic sets, groups, rings,. . .

® equivalent categories

biequivalent bicategories



Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}

Exercise

Find a statement about categories that is not invariant under
equivalence:
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Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}
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Exercise
Find a statement about categories that is not invariant under
equivalence:
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A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."



A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal

To have a syntactic criterion for properties and constructions that are
invariant under equivalence
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How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

¢ even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then gof exists.”

Can we give a definition of category without using equality of objects?



...and how to fix it.

Solution

Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.
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Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of

® a set O of objects

for each x,y € O, a type/set A(x,y) of arrows

for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €A(x,2)

for each x € O, an identity id, € A(x,x)



...and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
® a set O of objects
e for each x,y € O, a type/set A(x,y) of arrows
® for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €Alx,z)
e for each x € O, an identity id, € A(x,x)
[}

Gives rise to dependently typed language by adding logical
connectors.



Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.
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Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

® What about constructions on categories?

® What about other mathematical structures?
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Overview of types in Martin-Lof type theory

Type former Notation canonical term
Dependent type x:A F B(x)

Dependent term x:A F b(x):B(x)

Boolean type Bool T,1

Natural numbers type Nat 0,5X

Sum type >eaBx) (a,b)

Product type [1.4B(x) Alx:A).b
Identity type x:Ay:AFx=y refl(x) :x=x
Universe Type

Curry-Howard Correspondence

We can interpret these types as propositions or sets.



Properties of the identity type

Induction principle for a =b

To define a function

F01 T eeew.p

(cy:A) (px=y)

it suffices to specify its image on (x, x, reflx).

o sym: [T, ulc=y) > (r=x)
® trans: HXJ’Z:A(XZ_)/) x(y=2)—> (x=2)



The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A — B.

® The predicate “G is an abelian group” is a function Grp — Prop.

® Considering the lattice of subgroups of any group G produces a
function Grp — Latt.

Equality principle

[[ee=n- []Fw=50)

Xy:A f:A—B



Space interpretation

The identity type behaves like equality:
¢ reflexivity, symmetry, transitivity
® Everything respects equality

but more like paths in a space:
® (Can iterate identity type

® Cannot show that any two identities are identical

Voevodsky Correspondence

We can interpret
® atype K as a Kan complex [K]
® a dependent type x : B E(b) as a Kan fibration [p] : [E] — [B]
® a dependent term x : B+ e(b) : E(b) as a section of [e] of [p]

® atermp:a—kb asapath fromatobinK



The Univalence Axiom

There are two notions of ‘sameness’ between types:
* A=B
® A~ B (functions f : A < B : gsuch that fg=1and gf =1)

There is always a function
(A=B) = (A~B)

which is an equivalence in Kan complexes.

The Univalence Axiom

The function
(A=B)—> (A~B)

is an equivalence.

This is true in Kan complexes.



Outline

@ The equivalence principle in univalent foundations



Strategy

We always have a version of the equivalence principle:
Equality principle

[ [e=»-[] =)

xy:A f:A—B
but we want better ones where we replace the ‘synthetic’ equality x =y
with an ‘analytic’ equality x = y which depends on the type.
Strategy: prove that the function (x =y) — (x = y) is an equivalence
Univalence principle
(x=ry)=(x=ry)
for a type T and appropriate =;. Then we will get:
Equivalence principle

[ [e=n- []Fw=0))

Xy:A f:A—B



Contractible types, propositions and sets

® A is contractible

isContr(A) := Zl_[yzx

XA y:A

® A is a proposition

isProp(A) = l_[xzy
X, y:A
® Aisaset

isSet(A) := l_[isPrOP(x=y)

X, y:A

Prop := Z isProp(X) Set = Z isSet(X)

X:Type X:Type



Contractible types, propositions and sets

® A is contractible

isContr(A) := Zl_[yzx

XA y:A

® A is a proposition

isProp(A) := l_[ isContr(x =y)
X, y:A
® Ais aset
isSet(A) := l_[ isProp(x =y)

X, y:A

Prop := Z isProp(X) Set = Z isSet(X)

X:Type X:Type



Univalence for Propositions and Sets

Immediate consequences of the univalence axiom:
Univalence for propositions

P=PropQ ~ P—Q

Univalence for sets
P=54Q ~P=Q



Monoids in type theory

In type theory, a monoid is a tuple (M, u, e, a, A, p) where
1. M: Set
2. u:MxM—-M
3. e:M
4. a: Mg p canp(u(a, b),c) = pla, u(d,c))
5. A:Hgapule,a) =a
6. p: Mgppu(a,e) =a
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Monoids in type theory

In type theory, a monoid is a tuple (M, u, e, a, A, p) where
1. M: Set

2. u:MxM—-M

e:M

- T p eanpi(u(a, b), ¢) = pla, u(d,c))
- A Hgapule,a) =a

- pMgapula,e) =a

o v opw

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data, proof) where
® data is 1.—3.

® proof is 4.—6.



Structure Identity Principle

Univalence for monoids
M=MonoidN ~ MEN

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
® groups, rings

® posets

discrete fields

sets with fixpoint operator



Structure Identity Principle

Univalence for monoids
M=MonoidN ~ MEN

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
® groups, rings

® posets

discrete fields
® sets with fixpoint operator

What about categories?



Univalence for categories

We only have univalence for univalent categories: ones where the
canonical function A=B — A = B for objects A,B: ¥ is an
equivalence.

Here, the homsets are sets, and the type of objects will be groupoids.

Univalence for univalent categories
¢ =ycat? ~ C~D

We also have univalence for other higher strucuters
(Ahrens-North-Shulman-Tsementzis):

® bicategories, tricategories, etc

¢ double categories

® dagger categories



Further resources

® HoTT Reading Group, 10:30-12 on Wednesdays
® HoTT Book

® https://homotopytypetheory.org/book/
® Learn how to write proofs in a computer!

® https://leanprover-community.github.io/learn.html
® (Number Game)


https://homotopytypetheory.org/book/
https://leanprover-community.github.io/learn.html

Thank you!
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