Univalent foundations and the equivalence
principle

Paige Randall North

16 October 2020

Outline

@ The equivalence principle

The equivalence principle

Equivalence principle

Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.

The equivalence principle

Equivalence principle
Reasoning in mathematics should be invariant under the appropriate
notion of equivalence.
Notion of equivalence depends on the objects under consideration:
® equal numbers, functions,. ..
® isomorphic sets, groups, rings,. . .

® equivalent categories

biequivalent bicategories

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}

Exercise

Find a statement about categories that is not invariant under
equivalence:

Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about sets that is not invariant under isomorphism:

{0,{0}} = {0, {{0}}}
{0} ex

Exercise
Find a statement about categories that is not invariant under
equivalence:

o~
° ° ~ e
el

% has exactly 1 object.

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
"The basic character of the Principle of Isomorphism is that of
a constraint on the language of Abstract Mathematics; a wel-
come one, since it provides for the separation of sense from non-
sense."

Goal

To have a syntactic criterion for properties and constructions that are
invariant under equivalence

How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

® even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then gof exists.”

How to break the equivalence principle for categories. . .

® Recall: the statement
The category 6 has exactly one object.
is not invariant under equivalence of categories.

® In general, referring to equality of objects breaks invariance,
but. ..

¢ even the definition of category refers to equality of objects:

Problem
“If dom(g) is equal to cod(f), then gof exists.”

Can we give a definition of category without using equality of objects?

...and how to fix it.

Solution

Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

...and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of

® a set O of objects

for each x,y € O, a type/set A(x,y) of arrows

for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €A(x,2)

for each x € O, an identity id, € A(x,x)

...and how to fix it.

Solution
Use a logic/language of dependent sets, in which dom(g) = cod(f) is
encoded by what type of thing f and g are.

A category consists of
® a set O of objects
e for each x,y € O, a type/set A(x,y) of arrows
® for each x,y,z € O and each f € A(x,y) and g € A(y, 2), a type/set
gof €Alx,z)
e for each x € O, an identity id, € A(x,x)
[}

Gives rise to dependently typed language by adding logical
connectors.

Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

® What about constructions on categories?

Invariance for statements

Theorem (Freyd 76, Blanc ’78)

A property of categories (expressed in 2-sorted first order logic) is
invariant under equivalence iff it can be expressed in this dependently
typed language, using equality for arrows but not for objects.

® What about constructions on categories?

® What about other mathematical structures?

Outline

© Univalent foundations

Overview of types in Martin-Lof type theory

Type former Notation canonical term
Dependent type x:A F B(x)

Dependent term x:A F b(x):B(x)

Boolean type Bool T,1

Natural numbers type Nat 0,5X

Sum type >eaBx) (a,b)

Product type [1.4B(x) Alx:A).b
Identity type x:Ay:AFx=y refl(x) :x=x
Universe Type

Curry-Howard Correspondence

We can interpret these types as propositions or sets.

Properties of the identity type

Induction principle for a =b

To define a function

F01 T eeew.p

(cy:A) (px=y)

it suffices to specify its image on (x, x, reflx).

o sym: [T, ulc=y) > (r=x)
® trans: HXJ’Z:A(XZ_)/) x(y=2)—> (x=2)

The equality principle in type theory

Any predicate or construction that can be defined on terms of a type A
is of the form f : A — B.

® The predicate “G is an abelian group” is a function Grp — Prop.

® Considering the lattice of subgroups of any group G produces a
function Grp — Latt.

Equality principle

[[ee=n- []Fw=50)

Xy:A f:A—B

Space interpretation

The identity type behaves like equality:
¢ reflexivity, symmetry, transitivity
® Everything respects equality

but more like paths in a space:
® (Can iterate identity type

® Cannot show that any two identities are identical

Voevodsky Correspondence

We can interpret
® atype K as a Kan complex [K]
® a dependent type x : B E(b) as a Kan fibration [p] : [E] — [B]
® a dependent term x : B+ e(b) : E(b) as a section of [e] of [p]

® atermp:a—kb asapath fromatobinK

The Univalence Axiom

There are two notions of ‘sameness’ between types:
* A=B
® A~ B (functions f : A < B : gsuch that fg=1and gf =1)

There is always a function
(A=B) = (A~B)

which is an equivalence in Kan complexes.

The Univalence Axiom

The function
(A=B)—> (A~B)

is an equivalence.

This is true in Kan complexes.

Outline

@ The equivalence principle in univalent foundations

Strategy

We always have a version of the equivalence principle:
Equality principle

[[e=»-[] =)

xy:A f:A—B
but we want better ones where we replace the ‘synthetic’ equality x =y
with an ‘analytic’ equality x = y which depends on the type.
Strategy: prove that the function (x =y) — (x = y) is an equivalence
Univalence principle
(x=ry)=(x=ry)
for a type T and appropriate =;. Then we will get:
Equivalence principle

[[e=n- []Fw=0))

Xy:A f:A—B

Contractible types, propositions and sets

® A is contractible

isContr(A) := Zl_[yzx

XA y:A

® A is a proposition

isProp(A) = l_[xzy
X, y:A
® Aisaset

isSet(A) := l_[isPrOP(x=y)

X, y:A

Prop := Z isProp(X) Set = Z isSet(X)

X:Type X:Type

Contractible types, propositions and sets

® A is contractible

isContr(A) := Zl_[yzx

XA y:A

® A is a proposition

isProp(A) := l_[isContr(x =y)
X, y:A
® Ais aset
isSet(A) := l_[isProp(x =y)

X, y:A

Prop := Z isProp(X) Set = Z isSet(X)

X:Type X:Type

Univalence for Propositions and Sets

Immediate consequences of the univalence axiom:
Univalence for propositions

P=PropQ ~ P—Q

Univalence for sets
P=54Q ~P=Q

Monoids in type theory

In type theory, a monoid is a tuple (M, u, e, a, A, p) where
1. M: Set
2. u:MxM—-M
3. e:M
4. a: Mg p canp(u(a, b),c) = pla, u(d,c))
5. A:Hgapule,a) =a
6. p: Mgppu(a,e) =a

Monoids in type theory

In type theory, a monoid is a tuple (M, u, e, a, A, p) where
1. M: Set
2. u:MxM—-M
3. e:M
4. a: Mg p canp(u(a, b),c) = pla, u(d,c))
5. A:Hgapule,a) =a
6. p: Mgppu(a,e) =a

Why M : Set?

Monoids in type theory

In type theory, a monoid is a tuple (M, u, e, a, A, p) where
1. M: Set

2. u:MxM—-M

e:M

- T p eanpi(u(a, b), ¢) = pla, u(d,c))
- A Hgapule,a) =a

- pMgapula,e) =a

o v opw

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data, proof) where
® data is 1.—3.

® proof is 4.—6.

Structure Identity Principle

Univalence for monoids
M=MonoidN ~ MEN

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
® groups, rings

® posets

discrete fields

sets with fixpoint operator

Structure Identity Principle

Univalence for monoids
M=MonoidN ~ MEN

We also have univalence for other set-level strucuters
(Coquand-Danielsson):
® groups, rings

® posets

discrete fields
® sets with fixpoint operator

What about categories?

Univalence for categories

We only have univalence for univalent categories: ones where the
canonical function A=B — A = B for objects A,B: ¥ is an
equivalence.

Here, the homsets are sets, and the type of objects will be groupoids.

Univalence for univalent categories
¢ =ycat? ~ C~D

We also have univalence for other higher strucuters
(Ahrens-North-Shulman-Tsementzis):

® bicategories, tricategories, etc

¢ double categories

® dagger categories

Further resources

® HoTT Reading Group, 10:30-12 on Wednesdays
® HoTT Book

® https://homotopytypetheory.org/book/
® Learn how to write proofs in a computer!

® https://leanprover-community.github.io/learn.html
® (Number Game)

https://homotopytypetheory.org/book/
https://leanprover-community.github.io/learn.html

Thank you!

	The equivalence principle
	Univalent foundations
	The equivalence principle in univalent foundations

