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Directed type theory

Goal

To develop a directed type theory.

To develop a synthetic theory for reasoning about:

§ Higher category theory
§ Directed homotopy theory

§ Concurrent processes
§ Rewriting

Syntactic synthetic theories and categorical synthetic theories

§ homotopy type theory Ø weak factorization systems

§ directed homotopy type theory Ø directed weak factorization
systems

Both need to be developed.
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Directed homotopy theory

Syntax for a directed homotopy type theory

Semantics in Cat

Two-sided weak factorization systems



4/50

Outline

Overview of directedness

Directed homotopy theory

Syntax for a directed homotopy type theory

Semantics in Cat

Two-sided weak factorization systems



5/50

What does directed mean?

Syntactically

Martin-Löf’s identity type is symmetric/undirected since for any type T ,
and terms a, b : T , there is a function

i : IdT pa, bq Ñ IdT pb, aq

so that any path p : IdT pa, bq can be inverted to obtain a path
ip : IdT pb, aq.

§ Can think of these terms as undirected paths

§ Can we design a type former of directed paths that resembles Id but
without its inversion operation i?
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What does directed mean?

Semantically: Theorem

Consider a cartesian closed category C, and a reflexive graph Id in rC, Cs:

1C
r // Id

ε0ˆε1 // 1C ˆ 1C

The following are equivalent.

§ Id models identity types.

§ The mapping path space factorization

X
f // Y ù X

1ˆrf // X ˆY IdpY q
ε1 // Y

underlies a weak factorization system on C where all red (resp. blue)
maps are in the left (resp. right) class.

§ Id is

1. transitive,
2. connected,
3. symmetric.
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What does directed mean?

Semantically

higher groupoids

higher categories
(undirected paths Ď

directed paths)

directed spaces
(directed paths Ď

undirected paths)
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Directed spaces

Rough definition

A space together with a subset of its paths that are marked as ‘directed’
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Application: concurrency
Concurrent processes can be represented by directed spaces.

B

A

piA, iB q

pfA, fB q

§ A,B are two processes

§ m, n are two memory locations

§ which can be locked pLq or unlocked pUq by
each process

Fundamental questions:

§ Which states are safe? (Predicate Spxq on X op.)

§ Which states are reachable? (Predicate Rpxq on X .)
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Criteria

§ Directed paths are introduced as terms of a type former, hom, to be
added to Martin-Löf type theory

§ Transport along terms of hom

§ Independence of hom and Id
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Rules for hom: core and op

T TYPE

T core
TYPE

T TYPE

T op
TYPE

T TYPE t : T core

it : T

T TYPE t : T core

iopt : T op
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Rules for hom: formation

Id formation

T TYPE s : T t : T

IdT ps, tq TYPE

hom formation

T TYPE s : T op t : T

homT ps, tq TYPE
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Rules for hom: introduction

Id introduction

T TYPE t : T

rt : IdT pt, tq TYPE

hom formation

T TYPE t : T core

1t : homT pi
opt, itq TYPE
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Rules for hom: right elimination and computation

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq

hom right elimination and computation

T TYPE s : T core, t : T , f : homT pi
ops, tq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T core, t : T , f : homT pi
ops, tq $ eRpd , f q : Dpf q

s : T core $ eRpd , 1sq ” dpsq : Dp1sq
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Rules for hom: left elimination and computation

Id elimination and computation

T TYPE

s : T , t : T , f : IdT ps, tq $ Dpf q TYPE s : T $ dpsq : Dprsq

s : T , t : T , f : IdT ps, tq $ jpd , f q : Dpf q
s : T $ jpd , rsq ” dpsq : Dprsq

hom left elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq
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The interpretation

§ Using the framework of comprehension categories

§ Dependent types are represented by functors T : Γ Ñ Cat.

§ Dependent terms are represented by natural transformations

Γ

˚ ))

T

77�� t Cat

where ˚ : Γ Ñ Cat is the functor which takes everything to the
one-object category.

§ Context extension is represented by the Grothendieck construction
taking each functor T : Γ Ñ Cat to the Grothendieck opfibration

πΓ :

ż

Γ
T Ñ Γ.
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Interpreting core and op in the empty context

T TYPE

T core
TYPE T op

TYPE

T TYPE t : T core

it : T iopt : T op

For any category T ,

§ T core :“ obpT q

§ T op :“ T op

§ i : T core Ñ T and iop : T core Ñ T op are the identity on objects.
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Interpreting hom formation and introduction

T TYPE s : T op t : T

homT ps, tq TYPE

T TYPE t : T core

1t : homT pi
opt, itq TYPE

For any category T ,

§ Take the functor

hom : T op ˆ T Ñ Set ãÑ Cat.

§ Take the natural transformation

T core

˚
**

hom ˝piopˆiq

44�� 1‚ Cat

where each component 1t : ˚ Ñ hompt, tq picks out the identity
morphism of t.
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Interpreting right hom elimination and computation

T TYPE s : T core, t : T , f : homT pi
ops, tq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T core, t : T , f : homT pi
ops, tq $ eRpd , f q : Dpf q

s : T core $ eRpd , 1sq ” dpsq : Dp1sq

§ Use the fact that the subcategory
T core is coreflective:

§ for every ps, t, f q P
ş

T coreˆT
hom there

is a unique morphism
p1s , f q : ps, s, 1sq Ñ ps, t, f q with
domain in T core

§ Set eRpdqps,t,f q :“ Dp1s , f qdps,s,1sq
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Interpreting left hom elimination and computation

T TYPE s : T op, t : T core, f : homT ps, itq $ Dpf q TYPE

s : T core $ dpsq : Dp1sq

s : T op, t : T core, f : homT ps, itq $ eLpd , f q : Dpf q
s : T core $ eLpd , 1sq ” dpsq : Dp1sq

§ Replace T by T op and apply right hom elimination and computation.
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A homotopical perspective

While the homotopy theory of isomorphisms in categories

C Ñ Cp–q Ñ C ˆ C

provides an interpretation of Martin-Löf’s identity type, the homotopy
theory of morphisms in categories

C Ñ CpÑÑÑq Ñ C ˆ C

provides an interpretation of this hom former.
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The weak factorization system

§ Let p–q denote the category with two objects and one isomorphism
between them.

§ Let pÑÑÑq denote the category with two objects and one morphism
between them.

§ Then factorize the codiagonal of the one-point category in two ways

˚ ` ˚ Ñ p–q Ñ ˚ ˚ `˚ Ñ pÑÑÑq Ñ ˚

§ which produces a factorization of any diagonal (i.e. reflexive graphs
in rCat,Cats) in two ways which each generate weak factorization
systems.

C Ñ Cp–q Ñ C ˆ C C Ñ CpÑÑÑq Ñ C ˆ C

§ The first gives an interpretation of the Id type in Cat.

§ The second underlies this interpretation of the hom type in Cat.
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The weak factorization system continued

§ The right class of this weak
factorization system are those functors
p : E Ñ B which have the enriched
right lifting property

˚

DOM

��

// E

p

��
pÑÑÑq //

==

B

§ so all Grothendieck opfibrations (dependent projections) are in the
right class.

§ The functor 1‚ : T core ãÑ
ş

T coreˆT hom is the left part of the
factorization of

i : T core ãÑ T .

§ Then the right hom elimination and computation rules arise from
the weak factorization system.

T core
� _

1‚

��

d //
ş

ş

TcoreˆT hom D

π

��
ş

T coreˆT hom

eRpdq
77

ş

T coreˆT hom
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Semantics in Cat

Goal

To generalize the construction of this model of the homomorphism type
to other categories C with reflexive graphs in rC, Cs.

1C Ñ homÑ 1C ˆ 1C

Hurdles

§ If we model dependent types by right-hand maps C Ñ Γ, there’s no
good way to model the operation pΓ $ Cq ÞÑ pΓ $ Copq.

§ Old solution: we model dependent types by functors Γ Ñ Cat.

§ The second factorization generates a weak factorization system, but
CÑÑÑ Ñ C ˆ C is not a right-hand map there.

§ Old solution: consider the twisted arrow category
ş

CopˆC hom Ñ Cop ˆ C
§ Generally, we rely too much on properties of Cat. A synthetic

categorical theory of direction should be simpler.
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WFS from graph
How do we get weak factorization systems from a functorial reflexive
graph (Id-type) on a category?

X
η
ÝÑ ΓpX q

ε0ˆε1
ÝÝÝÑ X ˆ X

First, we need to factor any map f : X Ñ Y . We do this using the
mapping path space:

X
η
ÝÑ X fˆε0ΓpY q

ε1
ÝÑ Y

But this introduces an asymmetry.
In models of identity types, this is resolved because a ‘symmetry’

involution on ΓpX q is required that preserves η and switches ε0 and ε1.
In the directed case (e.g. CÑÑÑq, this isn’t resolved and we get two

factorizations underlying two weak factorization systems.

X
η
ÝÑ X fˆε0ΓpY q

ε1
ÝÑ Y X

η
ÝÑ ΓpY qε1ˆf X

ε0
ÝÑ Y

We want to see these two wfs’s as part of the same structure.
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Graph from WFS
How do we get a functorial reflexive graph (Id-type) back from a wfs on
a category?

We factor the diagonal of every object.

X
λp∆X q
ÝÝÝÝÑ Mp∆X q

ρp∆X q
ÝÝÝÝÑ X ˆ X

In our new notion of directed weak factorization, we need to preserve this
ability.

We can think of this as the following operation.

X

X X

11 ÞÑ

X

Mp1X , 1X q

X X

λp1X q

ρ1p1qρ0p1q
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Two-sided factorization

Factorization on a category

§ a factorization of every morphism

X Yf
ÞÑ X Mf Y

λpf q ρpf q

§ that extends to morphisms of morphisms

Two-sided factorization on a category

§ a factorization of every span into a sprout

X

Y Z

gf ÞÑ

X

Mpf , gq

Y Z

λpf ,gq

ρ1pf ,gqρ0pf ,gq

§ that extends to morphisms of spans
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Graphs
From any two-sided factorization, we obtain a reflexive graph on every
object

X

X X

11 ÞÑ

X

Mp1X , 1X q

X X

λp1X q

ρ1p1qρ0p1q

Conversely, from a reflexive graph X
η
ÝÑ ΓpX q

ε
ÝÑ X ,X on each object, we

obtain a two-sided factorization (Street 1974)

X

Y Z

gf ÞÑ

X

ΓpY qε1ˆf X gˆε0ΓpZ q

Y Z

ηfˆ1ˆηg

ε1πΓpZqε0πΓpY q
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Comma category

Notation

Write a span

X

Y Z

gf as f , g : X Ñ Y ,Z .

Then a factorization maps

X
f ,g
ÝÝÑ Y ,Z ÞÑ X

λpf ,gq
ÝÝÝÝÑ Mpf , gq

ρpf ,gq
ÝÝÝÝÑ Y ,Z

We’re in the comma category C Ó ∆C .
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Lifting

Lifting

A lifting problem is a commutative square,
and a solution is a diagonal morphism
making both triangles commute.

‚ ‚

‚ ‚

Two-sided lifting

A sprout A
b
ÝÑ B

c,d
ÝÝÑ C ,D lifts against a

span X
f ,g
ÝÝÑ Y ,Z if for any commutative

diagram of solid arrows, there is a dashed
arrow making the whole diagram commute.

A X

B

C ,D Y ,Z

b

f ,g

c,d
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Two-sided fibrations

Fibrations.

Given a factorization, a fibration is a
morphism f : X Ñ Y for which there is a
lift in

X X

Mpf q Y

λpf q f

ρpf q

Two-sided fibrations

Given a two-sided factorization, a
two-sided fibration is a span
f , g : X Ñ Y ,Z for which there is a lift in

X X

Mpf , gq

Y ,Z Y ,Z

λpf ,gq

f ,g

ρpf ,gq
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Rooted cofibrations

Cofibrations

Given a factorization, a cofibration is a
morphism c : AÑ B for which there is a
lift in

A Mpcq

B B

λpcq

c ρpcq

Rooted cofibrations

Given a two-sided factorization, a
rooted cofibration is a sprout

A
b
ÝÑ B

c,d
ÝÝÑ C ,D for which there is

a lift in

A Mpcb, dbq

B

C ,D C ,D

λpcb,dbq

b

ρpcb,dbq

c,d
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First results

For a factorization...
§ every isomorphism is both a cofibration and fibration

§ cofibrations and fibrations are closed under retracts

§ cofibrations and fibrations are closed under composition

§ fibrations are stable under pullback

§ cofibrations lift against fibrations

For a two-sided factorization...
§ every sprout whose top morphism is an isomorphism is a rooted

cofibration

§ every product projection X ˆ Y Ñ X ,Y is a two-sided fibration

§ the span-composition of two two-sided fibrations is a two-sided
fibration

§ two-sided fibrations are stable under pullback

§ rooted cofibrations lift against two-sided fibrations
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Two-sided weak factorization systems

Weak factorization system

A factorization pλ, ρq such that λpf q is a cofibration and ρpf q is a
fibration for each morphism f

Two-sided weak factorization system

A two-sided factorization pλ, ρq such that the span ρpf , gq is a two-sided
fibration and the sprout in green is a cofibration for each span pf , gq.

X X X

Mpf , !q Mpf , gq Mp!, gq

Y , ˚ Y ,Z ˚,Z

λpf ,!q λpf ,gq λp!,gq

ρpf ,!q

Mp1,1,!q Mp1,!,1q

ρpf ,gq ρp!,gq

!,11,!
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Two-sided weak factorization systems

Theorem (Rosický-Tholen 2002)

In a weak factorization system, the cofibrations are exactly the morphisms
with the left lifting property against the fibrations and vice versa.

Theorem

In a two-sided weak factorization system, the rooted cofibrations are
exactly the morphisms with the left lifting property against the two-sided
fibrations and vice versa.
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Two weak factorization systems

Proposition

Consider a 2swfs pλ, ρ0, ρ1q on a category with a terminal object. This
produces two weak factorization systems: a future wfs whose underlying
factorization is given by

X Yf
ÞÑ X Mp!, f q Y

λp!,f q ρ1p!,f q

and a past wfs whose underlying factorization is given by

X Yf
ÞÑ X Mpf , !q Y

λpf ,!q ρ0pf ,!q
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Two weak factorization systems

Proposition

Consider a two-sided fibration f , g : X Ñ Y ,Z in a 2swfs. Then f is a
past fibration and g is a future fibration.

Proposition

Consider a two-sided fibration f , g : X Ñ Y ,Z in a 2swfs, a past
fibration f 1 : Y Ñ Y 1 and a future fibration g 1 : Z Ñ Z 1. Then
f 1f , g 1g : X Ñ Y 1,Z 1 is a two-sided fibration.
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The example in Cat

There is a 2swfs in Cat given by the factorization

C

D E

GF ÞÑ

C

DÑÑÑcodˆF C GˆdomEÑÑÑ

D E

D!Fˆ1ˆE !G

codEdomD

§ The past fibrations contain the Grothendieck fibrations

§ The future fibrations contain the Grothendieck opfibrations

§ The two-sided fibrations contain the (Grothendieck) two-sided
fibrations (Street 1974)



44/50

2SWFSs from graphs
We want to understand which 2swfs’s arise from functorial reflexive
graphs, since this is how we will model the homomorphism type.

First, we characterize those functorial reflexive graphs which give rise
to 2swfs.

Theorem

Consider a functorial reflexive graph X Ñ ΓpX q Ñ X ,X . Then the
factorization that sends f : X Ñ Y to X Ñ X ˆY ΓpY q Ñ Y underlies a
weak factorization system if and only if Γ is weakly left transitive and
weakly left connected.

Theorem

Consider a functorial reflexive graph X Ñ ΓpX q Ñ X ,X . Then the
factorization that sends f , g : X Ñ Y ,Z to
X Ñ ΓpY q ˆY X ˆZ ΓpZ q Ñ Y ,Z is a two-sided weak factorization
system if and only if Γ it is weakly left transitive, weakly right transitive,
weakly left connected, and weakly right connected.
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Type-theoretic 2SWFSs

Theorem

The following are equivalent for a wfs:

§ it is generated by a weakly left transitive, weakly left connected, and
weakly symmetric functorial reflexive graph X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the Frobenius
condition, that cofibrations are stable under pullback along
fibrations, holds

Fibrant object in a 2swfs

An object X such that !, ! : X Ñ ˚, ˚ is a two-sided fibration.
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Type-theoretic 2SWFSs

Two-sided Frobenius condition.

The two-sided Frobenius condition
holds when for any ‘composable’
two rooted cofibrations where db is
a future fibration and d 1f is a past
fibration,

the ‘composite’ is a cofibration.

A E

B F

C D G

b f

dc d 1 g

AˆD E

B ˆD F

C G

bˆf

dπFcπB
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Type-theoretic 2SWFSs

Theorem (North 2017)

The following are equivalent for a wfs:

§ it is generated by a weakly left transitive, weakly left connected, and
weakly symmetric functorial reflexive graph X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the Frobenius
condition, that cofibrations are stable under pullback along
fibrations, holds

Theorem

The following are equivalent for a 2swfs:

§ it is generated by a weakly left transitive, weakly right transitive,
weakly left connected, weakly right connected, functorial reflexive
graph X Ñ ΓpX q Ñ X ,X .

§ it is type-theoretic: (1) all objects are fibrant and (2) the two-sided
Frobenius condition holds.
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Examples

§ In Cat, CÑÑÑ

§ In simplicial sets, free internal category on X yp1q

§ In cubical sets with connections, free internal category on X yp1q

§ In d-spaces (Grandis 2003), Moore paths ΓpX q



49/50

Summary

We now have

§ a syntactic synthetic theory of direction and

§ a categorical synthetic theory of direction

§ which behave similarly.

We need

§ to formalize the connection between the two,

§ to get rid of the op and core operations on types using a modal type
theory à la Licata-Riley-Shulman.
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Thank you!
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