(Towards a) Fuzzy type theory

Paige Randall North

Utrecht University

2 February 2021

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Motivation

▶ To develop a language in which to model opinions

Motivation

- ▶ To develop a language in which to model opinions
- ▶ To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side

Motivation

- ▶ To develop a language in which to model opinions
- To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side
- ▶ To obtain another generalization of Martin-Löf type theory

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object \top (initial object \bot) represents the true (false) proposition
 - ▶ Write $P \leq Q$ to mean that P implies Q.
 - ▶ *P* holds when $T \leq P$.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - ▶ Write $P \leq Q$ to mean that P implies Q.
 - ▶ *P holds* when $T \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice L of propositions, and a piece of evidence e ∈ L, e/L is the poset of propositions implied by e.
 - \blacktriangleright More generally, we can take a subcategory E of L.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - ▶ Write $P \leq Q$ to mean that P implies Q.
 - ▶ *P holds* when $\top \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice L of propositions, and a piece of evidence $e \in L$, e/L is the poset of propositions implied by e.
 - ▶ More generally, we can take a subcategory *E* of *L*.
- Logic of opinions
 - Model with fuzzy lattices and fuzzy up-sets
 - Above, we answer "Is P ≤ Q?" or "Does P hold?" with "yes" or "no", i.e., "0" or "1".
 - Now we answer "Is $P \leq Q$?" or "Does P hold?" with a value in an ordered monoid, for instance [0,1].

Proof irrelevant	Proof relevant
Propositions	
• Posets	
• Categories enriched in $\{0,1\}$	
Opinions	
• Fuzzy posets	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	Categories enriched in Set
Opinions	
• Fuzzy posets	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	 Categories
• Categories enriched in $\{0,1\}$	 Categories enriched in Set
Opinions	Fuzzy type theory
• Fuzzy posets	Fuzzy categories (?)
• Categories enriched in [0,1]	 Categories enriched in fuzzy sets,
	sets with a function to $\left[0,1\right]$

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	 Categories
• Categories enriched in $\{0,1\}$	 Categories enriched in Set
Opinions	Fuzzy type theory
• Fuzzy posets	• Fuzzy categories (?)
• Categories enriched in [0,1]	• Categories enriched in fuzzy sets,
	sets with a function to $\left[0,1\right]$

▶ Goal: develop the bottom-right box.

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as {0,1}-valued vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as {0,1}-valued vector space.
- Want to capture more of the structure with tailor-made algebraic notion.

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0,1\}$ forms a category.
- ▶ It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{B} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point $1 \to hom(x, x)$
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0,1\}$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{B} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point $1 \leq hom(x, x)$
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- lacktriangle The natural ordering on the booleans $\mathbb{B}:=\{0,1\}$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{B} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0,1\}$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{B} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

Booleans

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0,1\}$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{B} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating whether or not $x \leq y$.

The interval

- ▶ The natural ordering on the interval $\mathbb{I} := [0,1]$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{I} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

The interval

- ▶ The natural ordering on the interval $\mathbb{I} := [0,1]$ forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a \mathbb{I} -enriched category \mathcal{C} :
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, x)
 - ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating **to what extent** $x \le y$.

- In general, we can replace $\mathbb B$ or $\mathbb I$ with any monoidal category, but here we consider only monoidal categories which are posets, i.e., ordered monoids $\mathbb M$.
- ▶ Then, given an M-enriched category C (representing a space of opinions) we ask that it has the enriched (fuzzy) versions of all limits and colimits: all weighted limits and colimits.
- Then we consider a network of individuals, each with their own opinion space and opinion that they are communicating, and study dynamics.
 - ► Encode the network as a graph, and consider a sheaf over it, valued in the category of M-enriched categories.

Weighted limits and colimits

- In a category, we can consider the product A × B of two objects, A, B
- But the concept of 'weighted limits' allows us to weight both A and B by sets α and β.
- ▶ The product with this weighting is then the product of α -many copies of A and β -many copies of B ($A^{\alpha} \times^{\beta} B$)
- ▶ In a M-enriched category, to take a product of A and B, we take weights $\alpha, \beta \in M$.
- ▶ Then $A^{\alpha} \wedge^{\beta} B$ behaves like a conjunction of A scaled down by α and B scaled down by β .

Weighted meets and joins

Let:

- \triangleright S = "Alice likes strawberry ice cream."
- C = "Alice likes chocolate ice cream."
- ▶ *B* = "Alice likes chocolate ice cream better than strawberry ice cream."
- $^{\blacktriangleright}\ \alpha\in [\mathsf{0},\mathsf{1}]$

Weighted meets and joins

Let:

- \triangleright S = "Alice likes strawberry ice cream."
- C = "Alice likes chocolate ice cream."
- B = "Alice likes chocolate ice cream better than strawberry ice cream."
- ▶ $\alpha \in [0, 1]$

Then we can consider:

- $^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

Weighted meets and joins

Let:

- \triangleright S = "Alice likes strawberry ice cream."
- C = "Alice likes chocolate ice cream."
- B = "Alice likes chocolate ice cream better than strawberry ice cream."
- ▶ $\alpha \in [0, 1]$

Then we can consider:

- ${}^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

We can prove a 'fuzzy modus ponens':

•
$$(B^1 \wedge^{\alpha} S \leqslant C) = \alpha$$
 and $(B^1 \wedge^{\alpha} S \leqslant^{\alpha} C) = 1$

Fuzzy concepts

Let:

- P = "I like the iPhone."
- Q = "I like the Galaxy."
- ▶ *R* = "I like the Pixel."

Fuzzy concepts

Let:

- P ="I like the iPhone."
- Q = "I like the Galaxy."
- ▶ *R* = "I like the Pixel."
- ▶ $S = \{P, Q, R\}$
- ightharpoonup We can consider the presheaf M-category $[S, \mathbb{M}]$ whose objects are functions $S \to M$.
- \triangleright It is the *completion* of *S* under weighted co/limits.

$$P^{\alpha} \wedge^{\beta} Q \wedge^{\gamma} R$$
 or $((P, \alpha), (Q, \beta), (R, \gamma))$

for $\alpha, \beta, \gamma \in [0, 1]$.

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean O'Connor, Hans Riess, Ana Tenório)

- In the last section, we fuzzified propositional logic by seeing it as a part of category theory, and fuzzifying the enrichment from

 B to

 or

 M.
- Now we fuzzify Martin-Löf type theory by a similar route.
- People might have multiple reasons for their opinions, so this seems appropriate.

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

STLC	CCC
type A	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A \times B$
implication $A \Rightarrow B$	exponential B^A

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

STLC	CCC
type <i>A</i>	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A \times B$
implication $A \Rightarrow B$	exponential B^A

To fuzzify this, we consider on the right-hand side $\operatorname{Set}(\mathbb{M})$ -enriched categories.

Fuzzy sets

 $\operatorname{Set}(\mathbb{M})$ is the category whose

- objects are pairs (X, ν) where X is a set and $\nu : X \to M$
- ▶ morphisms $(X, \nu) \to (Y, \mu)$ are functions $f: X \to Y$ such that $\nu(x) \leqslant \mu(fx)$ for all $x \in X$

$$X \xrightarrow{f} Y$$

$$\downarrow^{\mu}$$

$$M$$

It inherits a monoidal structure from the ones on Set and M:

- $(X,\nu)\otimes(X,\mu):=(X\times Y,\nu\cdot\mu)$
- ▶ The monoidal unit is (*,1).

Fuzzy categories

Definition

A $\operatorname{Set}(\mathbb{M})$ -enriched category $\mathcal C$ consists of

- ▶ a set of objects ob(C),
- ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of Set(M),
- ▶ for each $x \in ob(C)$, a point $(1,*) \rightarrow hom(x,y)$
 - i.e., an element of hom(x, y) with value 1
- for each $x, y, z \in ob(\mathcal{C})$, a morphism
 - $\circ : \mathsf{hom}(x,y) \otimes \mathsf{hom}(y,z) \to \mathsf{hom}(x,z).$
 - ▶ i.e., a function \circ : hom $(x,y) \times \text{hom}(y,z) \rightarrow \text{hom}(x,z)$ such that $|f||g| \leq |g \circ f|$
- such that ...
- Now there can be multiple morphisms/reasons of a type/opinion, but each one comes with some intensity.

Dependent type theory

- We've talked about propositional logic and the simply typed λ-calculus, and their categorical interpretations.
- Our goal is actually dependent type theory.
 - Proof relevant first-order logic.
 - Types can be indexed by other types, just as predicates in first-order logic are indexed by sets.
 - In propositional logic, we have types/propositions A, in simply-types λ -calculus, we have terms/proofs $x:A \vdash b(x):B$, and in dependent type theory we have dependent types $x:A \vdash B(x)$.

Display map categories

Definition

A display map category is a pair (C, D) of a category C and a class D of morphisms (called display maps) of C such that

- C has a terminal object *
- every map $X \to *$ is a display map
- D is stable under pullback
- The objects interpret types, the morphisms interpret terms, and the display maps interpret dependent types, and sections of display maps interpret dependent terms.
- ▶ From a dependent type $x: B \vdash E(x)$, we can always form $\vdash \pi: \Sigma_{x:B}E(x) \rightarrow B$, and this is represented by the display maps.

Fuzzy display map categories

Definition

A fuzzy display map category is a pair (C, D) of a Set(M)-enriched category C and a class D of morphisms (called fuzzy display maps) of C, each of which has value 1, such that

- C has a terminal object *
- every map $X \to *$ is a display map
- D is stable under particular weighted pullbacks

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- ▶ The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- ▶ The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Definition

An α -fuzzy section of a fuzzy display map is a section with value at least α .

▶ These represent terms $x : B \vdash s :_{\alpha} E(x)$.

Substitution / weighted pullbacks

In the definition of *fuzzy display-map category*, we ask that the class of display maps is stable under particular weighted pullbacks.

- ▶ We choose the weight on *A* to be the singleton with value 1 and the weight on *B* to be the singleton with the value of *f*.
- ▶ Thus, the vertical maps have the same value (1), as do the horizontal maps.

Structural rules

Theorem

Fuzzy display map categories validate these rules.

Future work

Goals and questions

- Add type formers, like weighted conjunction
- Do we want to fuzzify other relations in type theory, like equality?
- Use this to study opinion dynamics

Thank you!