(Towards a) Fuzzy type theory

Paige Randall North

Utrecht University

2 February 2021

Outline

[Introduction and motivation](#page-2-0)

[Fuzzy propositional logic](#page-13-0)

[Fuzzy type theory](#page-31-0)

Outline

[Introduction and motivation](#page-2-0)

[Fuzzy propositional logic](#page-13-0)

[Fuzzy type theory](#page-31-0)

Motivation

▶ To develop a language in which to model opinions

Motivation

- ▶ To develop a language in which to model opinions
- ▶ To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side

Motivation

- ▶ To develop a language in which to model opinions
- § To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side
- ▶ To obtain another generalization of Martin-Löf type theory

- \blacktriangleright Logic of propositions
	- \blacktriangleright Model with complete lattices (posets with all co/limits)
		- ▶ Products (coproducts) represent conjunction (disjunction)
		- \blacktriangleright The terminal object \top (initial object \bot) represents the true (false) proposition
	- ▶ Write $P \leq Q$ to mean that P implies Q.
	- P holds when $\top \leq P$.

- \blacktriangleright Logic of propositions
	- ▶ Model with complete lattices (posets with all co/limits)
		- ▶ Products (coproducts) represent conjunction (disjunction)
		- \blacktriangleright The terminal object \top (initial object \bot) represents the true (false) proposition
	- ▶ Write $P \leq Q$ to mean that P implies Q.
	- P holds when $\top \leq P$.
- ▶ Logic of facts
	- ▶ Model with up-sets (slices) of lattices.
	- Given a lattice L of propositions, and a piece of evidence $e \in L$, e/L is the poset of propositions implied by e.
	- \blacktriangleright More generally, we can take a subcategory E of L.

- \blacktriangleright Logic of propositions
	- ▶ Model with complete lattices (posets with all co/limits)
		- ▶ Products (coproducts) represent conjunction (disjunction)
		- \blacktriangleright The terminal object \top (initial object \bot) represents the true (false) proposition
	- ▶ Write $P \leq Q$ to mean that P implies Q.
	- P holds when $\top \leq P$.
- ▶ Logic of facts
	- ▶ Model with up-sets (slices) of lattices.
	- ▶ Given a lattice L of propositions, and a piece of evidence $e \in L$, e/L is the poset of propositions implied by e.
	- \blacktriangleright More generally, we can take a subcategory E of L.
- ▶ Logic of opinions
	- ▶ Model with fuzzy lattices and fuzzy up-sets
	- Above, we answer "Is $P \leq Q$?" or "Does P hold?" with "yes" or "no", i.e., "0" or "1".
	- ▶ Now we answer "Is $P \leq Q$?" or "Does P hold?" with a value in an ordered monoid, for instance $[0, 1]$.

§ Goal: develop the bottom-right box.

Outline

[Introduction and motivation](#page-2-0)

[Fuzzy propositional logic](#page-13-0)

[Fuzzy type theory](#page-31-0)

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- \triangleright Previously, opinions were modeled by real-valued vectors.
- ▶ Opinion space was some real vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- \triangleright Previously, opinions were modeled by real-valued vectors.
- ▶ Opinion space was some real vector space.
- ▶ Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as $\{0, 1\}$ -valued vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- ▶ Previously, opinions were modeled by real-valued vectors.
- ▶ Opinion space was some real vector space.
- ▶ Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as $\{0, 1\}$ -valued vector space.
- ▶ Want to capture more of the structure with tailor-made algebraic notion.

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0, 1\}$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a $\mathbb B$ -enriched category $\mathcal C$:
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of \mathbb{B} ,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 \rightarrow hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \rightarrow$ hom (x, z) .
	- \blacktriangleright such that \ldots

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0, 1\}$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a $\mathbb B$ -enriched category $\mathcal C$:
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of \mathbb{B} ,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 \leqslant hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \rightarrow$ hom (x, z) .
	- \blacktriangleright such that \ldots

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0, 1\}$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a $\mathbb B$ -enriched category $\mathcal C$:
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of \mathbb{B} ,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 = hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \rightarrow$ hom (x, z) .
	- \blacktriangleright such that \ldots

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0, 1\}$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a $\mathbb B$ -enriched category $\mathcal C$:
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of \mathbb{B} ,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 = hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \leq$ hom (x, z) .
	- \blacktriangleright such that \ldots

Booleans

- ▶ The natural ordering on the booleans $\mathbb{B} := \{0, 1\}$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a $\mathbb B$ -enriched category $\mathcal C$:
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of \mathbb{B} ,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 = hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \leq$ hom (x, z) .
	- \blacktriangleright such that \ldots

We can interpret hom (x, y) as indicating whether or not $x \leq y$.

The interval

- \blacktriangleright The natural ordering on the interval $\mathbb{I} := [0, 1]$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a I-enriched category \mathcal{C} :
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of I,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 = hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \leq$ hom (x, z) .
	- \blacktriangleright such that \ldots

The interval

- \blacktriangleright The natural ordering on the interval $\mathbb{I} := [0, 1]$ forms a category.
- \blacktriangleright It has a monoidal structure given by multiplication.
- \blacktriangleright Thus, we can consider a I-enriched category \mathcal{C} :
	- a set of objects ob (\mathcal{C}) ,
	- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of I,
	- ▶ for each $x \in ob(\mathcal{C})$, a point $1 = hom(x, x)$
	- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism \circ : hom $(x, y) \cdot$ hom $(y, z) \leq$ hom (x, z) .
	- \blacktriangleright such that \ldots

We can interpret hom (x, y) as indicating to what extent $x \le y$.

- \blacktriangleright In general, we can replace $\mathbb B$ or $\mathbb I$ with any monoidal category, but here we consider only monoidal categories which are posets, i.e., ordered monoids M.
- \blacktriangleright Then, given an M-enriched category C (representing a space of opinions) we ask that it has the enriched (fuzzy) versions of all limits and colimits: all weighted limits and colimits.
- \triangleright Then we consider a network of individuals, each with their own opinion space and opinion that they are communicating, and study dynamics.
	- \triangleright Encode the network as a graph, and consider a sheaf over it, valued in the category of M-enriched categories.

Weighted limits and colimits

- In a category, we can consider the product $A \times B$ of two objects, A, B
- ▶ But the concept of 'weighted limits' allows us to weight both A and B by sets α and β .
- \triangleright The product with this weighting is then the product of α -many copies of A and β -many copies of B $\left(A^{\alpha}\times^{ \beta}B\right)$
- In a M-enriched category, to take a product of A and B , we take weights $\alpha, \beta \in M$.
- ► Then $A^{\alpha} \wedge^{\beta} B$ behaves like a conjunction of A scaled down by α and B scaled down by β .

Weighted meets and joins

Let:

- \blacktriangleright $S =$ "Alice likes strawberry ice cream."
- \triangleright $C =$ "Alice likes chocolate ice cream."
- \blacktriangleright $B =$ "Alice likes chocolate ice cream better than strawberry ice cream."
- $\triangleright \alpha \in [0, 1]$

Weighted meets and joins

Let:

- \blacktriangleright $S =$ "Alice likes strawberry ice cream."
- \triangleright $C =$ "Alice likes chocolate ice cream."
- \blacktriangleright $B =$ "Alice likes chocolate ice cream better than strawberry ice cream."
- $\bullet \ \alpha \in [0, 1]$

Then we can consider:

- $\bullet \ \alpha S =$ "Alice likes strawberry ice cream with intensity α ."
- \blacktriangleright $B^1 \wedge^{\alpha} S = \ ^{\alpha}B$ and $^{\alpha}S^{\prime\prime}$.

Weighted meets and joins

Let:

- \blacktriangleright $S =$ "Alice likes strawberry ice cream."
- \triangleright $C =$ "Alice likes chocolate ice cream."
- \blacktriangleright $B =$ "Alice likes chocolate ice cream better than strawberry ice cream."
- $\bullet \ \alpha \in [0, 1]$

Then we can consider:

- \bullet $\alpha S =$ "Alice likes strawberry ice cream with intensity α ."
- \blacktriangleright $B^1 \wedge^{\alpha} S = \ ^{\alpha}B$ and $^{\alpha}S^{\prime\prime}$.

We can prove a 'fuzzy modus ponens':

 \blacktriangleright $(B^1 {\scriptstyle\wedge}^{\alpha} S \leqslant C) = \alpha$ and $(B^1 {\scriptstyle\wedge}^{\alpha} S \leqslant {\scriptstyle\alpha} C) = 1$

Fuzzy concepts

Let:

- \blacktriangleright P = "I like the iPhone."
- ▶ $Q =$ "I like the Galaxy."
- \blacktriangleright $R =$ "I like the Pixel."
- \blacktriangleright $S = \{P, Q, R\}$

Fuzzy concepts

Let:

- \blacktriangleright P = "I like the iPhone."
- ▶ $Q =$ "I like the Galaxy."
- \blacktriangleright $R =$ "I like the Pixel."
- \blacktriangleright $S = \{P, Q, R\}$
- \triangleright We can consider the presheaf M-category [S, M] whose objects are functions $S \rightarrow M$.
- \triangleright It is the completion of S under weighted co/limits.
- \triangleright The elements are of the form

$$
P^{\alpha} \wedge^{\beta} Q \wedge^{\gamma} R
$$
 or $((P, \alpha), (Q, \beta), (R, \gamma))$

for $\alpha, \beta, \gamma \in [0, 1]$.

Outline

[Introduction and motivation](#page-2-0)

[Fuzzy propositional logic](#page-13-0)

[Fuzzy type theory](#page-31-0)

Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean O'Connor, Hans Riess, Ana Tenório)

- ▶ In the last section, we fuzzified propositional logic by seeing it as a part of category theory, and fuzzifying the enrichment from $\mathbb B$ to $\mathbb I$ or $\mathbb M$.
- ▶ Now we fuzzify Martin-Löf type theory by a similar route.
- ▶ People might have multiple reasons for their opinions, so this seems appropriate.

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

Simple type theory

There is an equivalence of categories between simply typed λ -calculi and cartesian closed categories.

To fuzzify this, we consider on the right-hand side $Set(M)$ -enriched categories.

Fuzzy sets

 $Set(M)$ is the category whose

- \blacktriangleright objects are pairs (X, ν) where X is a set and $\nu : X \to M$
- **•** morphisms $(X, \nu) \rightarrow (Y, \mu)$ are functions $f : X \rightarrow Y$ such that $\nu(x) \leq \mu(fx)$ for all $x \in X$

It inherits a monoidal structure from the ones on Set and M:

$$
\blacktriangleright (X,\nu) \otimes (X,\mu) := (X \times Y, \nu \cdot \mu)
$$

 \blacktriangleright The monoidal unit is $(*, 1)$.

Fuzzy categories

Definition

A Set(M)-enriched category C consists of

- a set of objects ob (\mathcal{C}) ,
- ▶ for each pair $x, y \in ob(\mathcal{C})$, an object hom (x, y) of $Set(\mathbb{M})$,
- ▶ for each $x \in ob(\mathcal{C})$, a point $(1, *) \rightarrow hom(x, y)$

i.e., an element of hom (x, y) with value 1

- ▶ for each $x, y, z \in ob(\mathcal{C})$, a morphism
	- \circ : hom (x, y) \otimes hom (y, z) \rightarrow hom (x, z) .
		- ▶ i.e., a function \circ : hom $(x, y) \times$ hom $(y, z) \rightarrow$ hom (x, z) such that $|f||g| \leq |g \circ f|$

 \blacktriangleright such that \ldots

 \triangleright Now there can be multiple morphisms/reasons of a type/opinion, but each one comes with some intensity.

Dependent type theory

- ▶ We've talked about propositional logic and the simply typed λ -calculus, and their categorical interpretations.
- ▶ Our goal is actually dependent type theory.
	- ▶ Proof relevant first-order logic.
	- ▶ Types can be indexed by other types, just as predicates in first-order logic are indexed by sets.
	- \blacktriangleright In propositional logic, we have types/propositions A, in simply-types λ -calculus, we have terms/proofs $x : A \vdash b(x) : B$, and in dependent type theory we have dependent types $x : A \vdash B(x)$.

Display map categories

Definition

A display map category is a pair (C, D) of a category C and a class D of morphisms (called *display maps*) of C such that

- \triangleright C has a terminal object \ast
- Exery map $X \rightarrow *$ is a display map
- \triangleright D is stable under pullback
- \blacktriangleright The objects interpret types, the morphisms interpret terms, and the display maps interpret dependent types, and sections of display maps interpret dependent terms.
- From a dependent type $x : B \vdash E(x)$, we can always form $\vdash \pi : \Sigma_{x:B} E(x) \rightarrow B$, and this is represented by the display maps.

Fuzzy display map categories

Definition

A fuzzy display map category is a pair (C, D) of a $Set(\mathbb{M})$ -enriched category C and a class D of morphisms (called fuzzy display maps) of $\mathcal C$, each of which has value 1, such that

- \triangleright C has a terminal object \ast
- Exery map $X \rightarrow *$ is a display map
- \triangleright D is stable under particular weighted pullbacks

Fuzzy terms

- ▶ The objects of a fuzzy display map category represent types (or contexts).
- The display maps $d : E \rightarrow B$ represent dependent types.
- § In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Fuzzy terms

- § The objects of a fuzzy display map category represent types (or contexts).
- Exteeding The display maps $d : E \rightarrow B$ represent dependent types.
- § In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Definition

An α -fuzzy section of a fuzzy display map is a section with value at least α .

► These represent terms $x : B \vdash s :_{\alpha} E(x)$.

Substitution / weighted pullbacks

In the definition of *fuzzy display-map category*, we ask that the class of display maps is stable under particular weighted pullbacks.

- \triangleright We choose the weight on A to be the singleton with value 1 and the weight on B to be the singleton with the value of f .
- \blacktriangleright Thus, the vertical maps have the same value (1), as do the horizontal maps.

Structural rules

$$
\begin{array}{lll}\n\frac{\Gamma\vdash A\mathsf{Type}}{\vdash \neg \mathsf{ctx}} \text{ (C-Emp)} & \frac{\Gamma\vdash A\mathsf{Type}}{\vdash \Gamma, x:A\mathsf{ctx}} \text{ (C-Ext)} \\
\frac{\vdash \Gamma, x:A,\Delta \vdash x:A}{\Gamma, x:A,\Delta \vdash x:A} \text{ (Var)} & \frac{\Gamma\vdash s:\mathsf{a}A}{\Gamma\vdash s:\mathsf{a}A} \text{ (Cons)} \\
\frac{\Gamma,\Delta\vdash B\mathsf{Type}\quad \Gamma\vdash A\mathsf{Type}}{\Gamma, x:A,\Delta\vdash B\mathsf{Type}} \text{ (Weak}_{ty}) & \frac{\Gamma,\Delta\vdash b:\mathsf{a}B\quad \Gamma\vdash A\mathsf{Type}}{\Gamma, x:A,\Delta\vdash b:\mathsf{a}B} \text{ (Weak}_{tm}) \\
\frac{\Gamma,x:A,\Delta\vdash B\mathsf{Type}\quad \Gamma\vdash a:\mathsf{a}A}{\Gamma,\Delta[a/x]\vdash B[a/x]\mathsf{Type}} \text{ (Subst}_{ty}) & \frac{\Gamma,x:A,\Delta\vdash b:\mathsf{a}B\quad \Gamma\vdash a:\mathsf{a}A}{\Gamma,\Delta[a/x]\vdash b[a/x]:\mathsf{a}B[a/x]} \text{ (Subst}_{tm})\n\end{array}
$$

Theorem

Fuzzy display map categories validate these rules.

Future work

Goals and questions

- ▶ Add type formers, like weighted conjunction
- ▶ Do we want to fuzzify other relations in type theory, like equality?
- ▶ Use this to study opinion dynamics

Thank you!