Coinductive control of inductive data types

Paige Randall North and Maximilien Péroux

Published in CALCO 2023 arXiv:2303.16793

15 June 2023

Outline

Introduction and background

Endofunctors

Outline

Introduction and background

Endofunctors

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

¹Recall Stefania Damato's talk

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including containers¹ with extra structure.

¹Recall Stefania Damato's talk

Overview

Theorem (N.-Péroux)

The category of algebras over an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor.

Examples

There are many examples, including containers¹ with extra structure.

Gain

Get more control over algebras

Get more "initial algebras" (e.g. generalized W-types)

¹Recall Stefania Damato's talk

Review of categorical W-types

Let $\ensuremath{\mathcal{C}}$ be a locally presentable, symmetric monoidal closed category, i.e. Set.

Natural numbers

The type of natural numbers \mathbb{N} is the initial algebra for the endofunctor $X \mapsto X + 1$.

This endofunctor fulfills our hypotheses.

Lists

The type of lists $\mathbb{L}ist(A)$ is the initial algebra for the endofunctor $X \mapsto X \times A + 1$.

When A is equipped with the structure of a commutative monoid, this fulfills our hypotheses.

Previous work on coalgebraic enrichment

Univeral measuring coalgebra (Wraith, Sweedler 1968)

For k-algebras A and B, there is a k-coalgebra Alg(A, B)

- which underlies an enrichment of k-algebras in k-coalgebras
- whose set-like elements² are in bijection with Alg(A, B).

Taking B := k, one gets the dual $\underline{Alg}(A, k)$ of A.

Extensions

- Anel-Joyal 2013 (dg-algebras)
- Hyland-Franco-Vasilakopoulou 2017 (monoids)
- ► Vasilakopoulou 2019 (*V*-categories)
- ▶ Péroux 2022 (∞-algebras of an ∞-operad)
- McDermott-Rivas-Uustalu 2022 (monads)
- N-Péroux 2023 (algebras of endofunctor)

²those $c \in \mathsf{Alg}(A,B)$ s.t. $\Delta c = c \otimes c$ and $\epsilon(c) = 1_A$

Enriched categories³

Definition

An enrichment of a category ${\mathcal C}$ in a monoidal category ${\mathcal V}$ consists of

- ▶ a functor $\underline{C}(-,-)$: $C^{op} \times C \to V$
- a morphism $\mathbb{I} \to \underline{\mathcal{C}}(A, A)$ for each object A of \mathcal{C}
- ▶ a morphism $\underline{C}(A, B) \otimes \underline{C}(B, C) \rightarrow \underline{C}(A, C)$ for each triple A, B, C of objects of C
- an isomorphism $\mathcal{V}(\mathbb{I}, \underline{\mathcal{C}}(A, B)) \cong \mathcal{C}(A, B)$

Remark

Monoidal closed means enriched in itself.

³Recall Niels van der Weide's talk

Outline

Introduction and background

Endofunctors

Measuring in general

Fix a category C and an endofunctor F satisfying our hypotheses.

Measuring

For algebras $(A, \alpha), (B, \beta)$ a measure $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{C}(A, B)$ such that

$$C \xrightarrow{\chi} FC \xrightarrow{F(\phi)} F(\underline{C}(A,B)) \longrightarrow \underline{C}(FA,FB)$$

$$\downarrow^{\beta}$$

$$\underline{C}(A,B) \xrightarrow{\alpha} \underline{C}(FA,B)$$

i.e., the measure and the co/algebra structures are compatible. The *universal measure* AlgA, B is the terminal measure $(A, \alpha) \rightarrow (B, \beta)$.

Measuring for the natural numbers

Consider the endofunctor $X \mapsto X + 1$ on Set.

- Algebras are sets A together with $A + 1 \rightarrow A$
 - Have $-_A : \mathbb{N} \to A$
- Coalgebras are sets C together with $A \rightarrow A + 1$

• Have
$$\llbracket - \rrbracket : C \to \mathbb{N}^{\infty}$$

Measuring

For algebras A, B, a measure $A \to B$ is a coalgebra C together with a function $C \to A \to B$ such that

- $f_c(0_A) = 0_B$ for all $c \in C$;
- $f_c(a+1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- $f_c(a+1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

The universal measure AlgA, B is the terminal measure $A \rightarrow B$.

Set-like elements in general

Definition

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)$$

i.e., elements of Alg(A, B).

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A, B)$$

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!]=\infty$

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \operatorname{Alg}(A, B)$ is an element $c \in \operatorname{Alg}(A, B)$ s.t. $[\![c]\!] = \infty$

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $c \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![c]\!] = \infty$ so f_c is an algebra homomorphism

Measuring

• $f_c(0_A) = 0_B$ for all $c \in C$;

▶ ...

•
$$f_c(a+1) = f_{c-1}(a) + 1$$
 for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $c \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![c]\!] = \infty$ so f_c is an algebra homomorphism that is, an element of $\operatorname{Alg}(A, B)$.

Measuring

• $f_c(0_A) = 0_B$ for all $c \in C$;

▶ ...

•
$$f_c(a+1) = f_{c-1}(a) + 1$$
 for $\llbracket c \rrbracket \ge 1$ and for all $a \in A$.

Set-like elements

The set-like elements are

$$\mathbb{I} \to \underline{\mathsf{Alg}}(A,B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $[\![*]\!] = \infty$ so $\mathbb{I} \to \underline{\operatorname{Alg}}(A, B)$ is an element $c \in \underline{\operatorname{Alg}}(A, B)$ s.t. $[\![c]\!] = \infty$ so f_c is an algebra homomorphism that is, an element of $\operatorname{Alg}(A, B)$.

Example

 $\frac{\mathsf{Alg}(\mathbb{N},A)\cong *}{\underline{\mathsf{Alg}}(\mathbb{N},A)\cong \mathbb{N}^{\infty}}$

What are the non-set-like elements?

Example

$$\mathsf{Alg}(\mathbb{N}, A) \cong *$$
$$\mathsf{Alg}(\mathbb{N}, A) \cong \mathbb{N}^{\infty}$$

The elements corresponding to $n \in \mathbb{N}^{\infty}$ are functions which 'are algebra homomorphisms' on $\{0, ..., n\} \subseteq \mathbb{N}$, i.e., are *n*-partial homomorphisms.

- Let \mathbb{n} denote the quotient of \mathbb{N} by m = n for all $m \ge n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^{∞} consisting of $\{0, ..., n\}$.

Example

$$\mathsf{Alg}(\mathbb{n}, A) \cong \begin{cases} \mathbb{N}^{\infty} & \text{if } n_A = m_A \text{ for all } m \ge n; \\ \mathbb{n}^{\circ} & \text{otherwise.} \end{cases}$$

What can we do with this?

Perhaps define more general *initial objects*.

C-initial objects

For a coalgebra C, a C-initial algebra is an algebra A universal with the property that for all other algebras B there is a unique

 $C \to \underline{\operatorname{Alg}}(A, B).$

Examples

For the natural-numbers endofunctor:

- ▶ ℕ is the *I-initial algebra*
- \mathbb{N} is the \mathbb{N}^{∞} -initial algebra
- n is the n°-initial algebra

Future work

- Work out more examples in detail
- Understand what it means to endow the containers with extra stucture (e.g. A needs a commutative monoid structure for the container for List(A))
- Understand C-initial algebras in more examples and in general
- Understand if this extra structure is useful for programming languages

Thank you!