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Type theory’s beginnings

® 1970s: Martin-Lof introduces his type theory

® As a self-sufficient foundation of mathematics
® Well-suited for machine verification

Classical mathematics: Mathematics a la Martin-Lof:

’ Homotopical mathematics ‘

’ Categorical notions ‘ o

Set theory E Type theory

’FiI‘St-Order logic ‘




What does type theory look like?

¢ In mathematics, statements look like the following:

® Consider a natural number n. The sum n + n is even.
® Consider a space X. The cone on X is contractible.

¢ In type theory, we write this as

® n:Nte(n):isEven(n +n)

® X :Spacest ¢(X) :isContr(CX)
e Type theory provides:

natural numbers type N
product type A x B

sum type A+ B

function type A — B

a universe type Type

a type (!) of equalities a =4 b
ete
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Interpretations of type theory into classical mathematics

Types Terms | Product | Equality
Propositions | proofs A =
Sets elements X =
Groupoids objects X =
Spaces points X ~

e Everything in type theory respects equality
® This is the definition of equality in type theory (roughly)
e Mathematics in type theory
+ Interpretation into X's where equality is interpreted by Y
~» Mathematics in Xs up to Y



Different notions of equality

Synthetic vs. analytic equalities
In type theory with the equality type, we always have a
(“synthetic”) equality type between a,b: D

a=pb.
Depending on the type D, we might also have a type of “analytic”
equalities

a>=p b.

A univalence principle for this D and this ~p states that
(a=pb) = (a~pb)

is an equivalence.
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Identicals and indiscernibilites

Identity of indiscernibles

Leibniz: two things are equal when they are indiscernible (have the
same properties).

(a=pb) < I Pla)~P@)

P:D—Type

® This holds in type theory.

¢ Given a univalence principle (a =p b) ~ (a ~p b), we find an
equivalence principle:

(a ~p b) = II P ~Pe

P:D—Type



Univalence

® We've seen that equality in type theory can be interpreted as
notions weaker than classical equality (e.g. isomorphism,
paths).

® Voevodsky imported weakness for equality from the
interpretation in spaces into type theory by imposing the

Univalence Aziom (UA):

The canonical function (A =type B) = (A ~ B) is an
equivalence of types, for any types A and B.

e UA is validated by the interpretation into spaces, but not into
propositions, sets, or groupoids.

e Instead we internalize these notions.
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Internalization of classical mathematics into type theory

Classical mathematics: Mathematics a la Martin-Lof:

x
T h
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Univalent mathematics
e [f two types A, B are propositions,

(A =prop B) & (A~ B) ~ (A & B)

so everything respects bi-implication of propositions.
e If A, B are sets,

UA
(A =g B) B4~ B)~ (A= B)
so everything respects bijection of sets.
e For types A, B which are structured sets (groups, rings, etc),

UA
~(

(A =cwp B) A~B)~ (A= B)

so everything respects isomorphism of groups (or rings, etc).?
e For univalent categories A, B,

(A =vca B) 2 (A~ B) ~ (A~ B)

so everything respects equivalence of univalent categories.*

3Coquand-Danielsson 2013
4 Ahrens-Kapulkin-Shulman 2015




Univalent mathematics

® Voevodsky dreamt of ‘univalent mathematics’ in which

where D is any type of mathematical object (propositions, sets,
groups, categories, co-categories, etc) and ~p is the
appropriate notion of ‘sameness’ for that type of objects.

® This would give us an appropriate language in which to study
D.
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Structures

® Morally, an £-structure for a signature £ is a Reedy fibrant
diagram £ — Type.

® In type theory, we define an L-structure fiberwise.

® An Lca-structure C consists of:

I
A x:CO, f:CA(z,z) F CI(f) : Type

i £,y.2:CO, f : CA(z,y),g : CA(y,2), h :
10) CA(z,2) F CTyy.(f,g,h) : Type

Lcat ® 2,y:CO, f,g:CA(x,y) - CE,,(f,g9) : Type

T E

CO : Type
z,y:COF CA(x,y) : Type

® Then we add axioms.
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Level-wise equivalence

Proposition
For two L-structures S, T,

(S=r-suT) = (5= st T)
where =, _s;, denotes levelwise equivalence.

A levelwise equivalence C =, st D consists of:
* ¢o:CO = DO
® 2,9y:COFey:CA(x,y) = Dleox, eoy)
® 2:CO,f:CA(z,x) e : CI,(f) = Dl.yz(eaf)
® x,y,2:CO, f:CA(z,y),g: CA(y,2),h: CA(z,2) F
CTm,y,Z(fa g,h) = DTeom,eoy,eoz<€Afa eag,eah)
© 2,y:CO, f,g:CA(x,y) - CEyy(f,9) = CEeomeoy(eaf,eag)

But this is not an equivalence of categories.
And is it appropriate to call C, D categories?



Indiscernibility

Definition

Given an L-structure M, and an object S of £, we say that two
elements z,y : M S are indiscernible if substituting « for y in any
object of £ that depends on (i.e. object with a morphism to) S
produces equivalent types.

Definition

An L-structure M is univalent if for any object S of £, and any
x,y : M S, the type of indiscernibilities between x and y is
equivalent to the type of equalities between z and y.
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Univalent L., structures

Let C be a univalent L¢,; structure.

® Any two terms

I )
/ x:CO, f:CA(x,x) 1,5 :CI(f) are
\ l / indiscernible.
A

— Each CI,(f) is a proposition.

u — Similarly, each CT, , -(f,g,h), CELy(f,9)
0] is a proposition.

T

® In the axioms for a category, we have that E behaves like
equality (is reflexive and a congruence for 7', I, E.)

— Univalence at A means that f = g is equivalent to CE, 4(f, g).
— CA(xz,y) is a set.



Univalent L., structures

® The indiscernibilities between a, b : CO consist of
® e : CA(x,a) =2 CA(x,b) for each x : CO
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([ 95 1) 0 CTh 20 (o= (), G, Pow (h)) CEax(f,9) ¢ CEba(dex(f), dox(g
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Univalent L., structures

® The indiscernibilities between a, b : CO consist of
® e : CA(x,a) =2 CA(x,b) for each x : CO
® ¢, :CA(a,z) 2 CA(b, z) for each z : CO
® (e : CA(a,a) = CA(b,D)
® The following for all appropriate w, x,y, z, f, g, h:

Toy,a(f,9,h) € CToy b (f, dye(9), Pae(h)) Cla(f) < Clo(¢ee(f))

Tova,=(f,9,h) < CTop = (Gre(f), Po=(9), h) CEs,a(f,9) < CEsp(due(f), Pze(g
2w (fy9,0) € CTo 2w (Pez(f), g5 Pew(h)) CEax(f,9) ¢ CEba(dex(f), dox(g

Te.a,a(f,9,h) < CTi b b(Pze(f) Poe(9), pze(h))  CEa,a(f,g) <+ CEbb(des(f); Poe(9)

To,z,a(f 9, 1) < CTh0,6(Pez(f), Pue(g), Pee(h))

Ta,aa(f,9,h) <> CTob.a(dee(f); Pox(9), ez (h))

Tasa,a(f,9:h) <> CTop,b(dee(f), Pee(g); Pee(h))

® But this an isomorphism in the usual categorical sense.

— Univalence at O means that z = y is equivalent to x =2 y.
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Summary

For every signature £, we have

® a notion of structure,

a notion of indiscernibility within each sort,

a notion of univalent structures,

a notion of equivalence,
® a univalence theorem.

The paper includes examples of
® j-categories,
¢ profunctors,

® bicategories,

opetopic bicategories,



Current and future work

® Drop the splitness condition for certain structures.
e Extend to infinite structures.
e Formulate an analogue to the Rezk completion.

e Translate the theory into one about structures which can
include explicit functions.

e Explore mathematics within examples.

® Give a model-category-theoretic account.
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