Seminar Logic and Foundations of Computing Homework 1

Sara Rousta

February 11, 2025

Problem 1. Let \mathcal{D} be a nonemepty small category.

- (a) (5 pt) Show, using the Yoneda Lemma, that for every $d \in \text{obj } \mathcal{D}$ the colimit of representables $\mathcal{D}(d, -)$ is the one-point set.
- (b) (5 pt) Use (a) to show $2 \implies 3$ of Lemma 2.13:

Let $F : \mathcal{D}' \to \mathcal{D}$ be a functor such that it satisfies the finality condition with respect to all representable functors $\mathcal{D}(d, -)$. Show that for every object d of \mathcal{D} , the slice category $d \downarrow F$ is connected.

(Compare to Exercises 4 and 5 of IX.3, Final Functors in Categories for the Working Mathematician by Mac Lane.)

Solution.

(a) Consider the following natural isomorphisms:

$$\mathbf{Set}(\operatorname{colim} \mathcal{D}(d, -), X) \cong [\mathcal{D}, \mathbf{Set}](\mathcal{D}(d, -), \Delta X)$$
$$\cong \Delta X(d)$$
$$= X$$
$$\cong \mathbf{Set}(1, X),$$

where these are consequences of the Yoneda Lemma. Again, by a corollary to Yoneda, it follows that $\operatorname{colim} \mathcal{D}(d, -) \cong 1$.

(b) Fix d of \mathcal{D} . Note that it follows by assumption and part (a) that the canonical morphism $\operatorname{colim} \mathcal{D}(d, F-) \to 1$ is an isomorphism. Thus, the slice category $d \downarrow F$ is nonemepty. Indeed, $d \downarrow F$ is nonemepty whenever \mathcal{D}' is nonemepty. If \mathcal{D}' were empty we would have that the colimit of the empty category, being the initial object, is isomorphic to 1 in **Set**, a contradiction.

To see that for every pair of objects d', d'' of \mathcal{D}' , there exists a zigzag of morphisms connecting $d \to Fd'$ and $d \to Fd''$ in $d \downarrow F$, recall how colimits in **Set** look like:

$$\operatorname{colim} \mathcal{D}(d, F-) = \left(\sum_{d \in \operatorname{ob} \mathcal{D}'} \mathcal{D}(d, Fd')\right) / \sim,$$

where the quivalence relation is generated by $(d \to Fd') \sim \mathcal{D}(d, Ff)(d \to Fd')$ for all $d' \xrightarrow{f} d''$ of \mathcal{D}' and $d \to Fd'$ in $\mathcal{D}(d, Ff)$. We have that $(d \to Fd') \sim (d \to Fd'')$ precisely when there is a zigzag of morphisms connecting them, and that $\operatorname{colim} \mathcal{D}(d, F-) \cong 1$. It follows that there must exist a zigzag for every pair of objects in $d \downarrow F$. \Box