Seminar Logic and Foundations of Computing Homework 3

Sara Rousta, Edward van de Meent

March 4, 2025

Problem 1. Show that every colimit can be expressed as a filtered colimit of finite (finitely generated) colimits, viz. given a diagram $D : \mathcal{D} \to \mathcal{C}$ with \mathcal{C} cocomplete and \mathcal{D} small, colim D can be constructed as the filtered colimit of the diagram of all colim D', where $D' : \mathcal{D}' \to \mathcal{D}$ ranges over all domain restrictions of \mathcal{D} to finitely generated subcategories \mathcal{D}' of \mathcal{D} .

Solution. Let \mathcal{C} be cocomplete, and let $D: \mathcal{D} \to \mathcal{C}$ be a small diagram. Then we have a diagram $F : \operatorname{FinSub}(\mathcal{D}) \to \mathcal{C}$ mapping finitely generated subcategories \mathcal{D}' of \mathcal{D} to their respective colimits, and mapping an inclusion morphism $f: \mathcal{D}' \to \mathcal{D}''$ to the factorisation of colim D'' through colim D'. Then we have to show a few things: We have to show that the category $\operatorname{FinSub}(\mathcal{D})$ is filtered, and we need to show that indeed these colimits are the same.

- 1. The category of finite subcategories is filtered. We can see this by using Lemma 2.19 $(3 \implies 1)$. Firstly, note that the empty category is finitely generated, and therefore a subcategory of \mathcal{D} , Meaning that FinSub(\mathcal{D}) is nonempty. Secondly, every pair of finitely generated subcategories $\mathcal{D}', \mathcal{D}''$ has a span given by the subcategory generated by the union of their objects and the union of their morphisms. Then clearly, \mathcal{D}' and \mathcal{D}'' are subcategories, meaning we have inclusion morphisms which are a span. Thirdly, when we have two parallel morphisms $\mathcal{D}' \xrightarrow{f,g} \mathcal{D}''$, we have a morphism equalizing them: The identity on \mathcal{D}'' , since inclusions are identical in this category.
- 2. To show that the colimits are the same, we will show that either colimit forms a cone over the others diagram. First, for each finitely generated subdiagram D' of D, clearly we have a cone of the colimit of D over D'. As a result, we find that there are maps $\operatorname{colim}_{d\in \mathcal{D}'} D' \to \operatorname{colim}_{d\in \mathcal{D}} D$ which factor all maps p_d (see diagram below) for $d \in \mathcal{D}'$. This creates a cone over F, since for any inclusion in FinSub (\mathcal{D}) , our choice of morphism must commute by virtue of forming a cone over the full diagram of D. As a result, we find that there is a unique map from colim F to colim D.

Second, we will show that the colimit of F forms a cone over D: for every object $d \in \mathcal{D}$, form the finitely generated subcategory of \mathcal{D} containing just that object. Since clearly the colimit of this diagram is equivalent to itself, we find that $\rho_d : Dd \to \operatorname{colim} F$ (up to isomorphism). This is indeed a cone, since for any morphism $f : d \to d'$, we have inclusion maps from the finitely generated subcategories $\{d\}$ and $\{d'\}$ to the finitely generated subcategory corresponding with the graph $\{d \xrightarrow{f} d'\}$. These inclusion maps give rise to morphisms from $\operatorname{colim} \{Dd\}$ and $\operatorname{colim} \{Dd'\}$ to $\operatorname{colim} \{Dd \xrightarrow{Df} Dd'\}$ which commute with the injections $\rho_{\{Dd\}}, \rho_{\{Dd'\}}$ and $\rho_{\{Dd \xrightarrow{Df} Dd'\}}$, proving that indeed the morphisms out of the singleton diagrams form a cone over D, giving us a map $\operatorname{colim} D \to \operatorname{colim} F$.

Finally, since the mappings of cones compose to precisely the identity on both sides, we find that their respective factorings must form an equivalence, completing our proof. \Box