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Exercise 1. In this exercise we aim to prove the following Lemma, which is used in part (b) of the
proof of 12.15 on page 118.

Lemma 1 Let D : I → Set be a filtered diagram in Set. Let (ci : Di → C)i∈I be a colimiting cocone
and let Z ⊆ Di be some finite subset for some i. Then there is some (f : i → j) ∈ I, some finite subset
Z ′ ⊆ Dj and some surjection e : Z → Z ′ such that the diagram

Z Z ′

Di Dj

C

e

Df

ci cj

commutes and such that cj |Z′ is injective.

(a) (3 points) Prove that there is some f : i → j such that for all z1, z2 ∈ Z, we have ci(z1) = ci(z2)
implies Df(z1) = Df(z2).

(b) (3 points) Now choose Z ′ := Df(Z) and prove the lemma.

Exercise 2. In this exercise we will see two examples of strictly many-sorted algebraic categories, i.e.
algebraic categories which aren’t single-sorted.

(a) (2 points) Prove that the category Set × Set (where morphisms are pairs of functions) is not
single-sorted.

(b) (3 points) A category is called trapped if it contains two objects A,B such that there is no
morphism A → B. Let C be a small trapped category. Show that there exist a non-trivial splitting
C1, C2 of objects of C, such that for each pair of objects c ∈ C1, c

′ ∈ C2, there is no morphism c → c′.

(c) (5 points) Let C again be a small trapped category, and let A be an algebraic category where the
initial and terminal objects are not the same. Prove that the category [C,A] is a strictly-multisorted
algebraic category.
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