Seminar Logic and Foundations of Computing Homework 2

By Rob Schellingerhout & Edward van de Meent

February 20, 2025

Exercise 1. In this exercise we aim to prove the following Lemma, which is used in part (b) of the proof of 12.15 on page 118.

Lemma 1 Let $D: I \to Set$ be a filtered diagram in Set. Let $(c_i: Di \to C)_{i \in I}$ be a colimiting cocone and let $Z \subseteq Di$ be some finite subset for some i. Then there is some $(f: i \to j) \in I$, some finite subset $Z' \subseteq Dj$ and some surjection $e: Z \to Z'$ such that the diagram

commutes and such that $c_j|_{Z'}$ is injective.

(a) (3 points) Prove that there is some $f: i \to j$ such that for all $z_1, z_2 \in Z$, we have $c_i(z_1) = c_i(z_2)$ implies $Df(z_1) = Df(z_2)$.

(b) (3 points) Now choose Z' := Df(Z) and prove the lemma.

Exercise 2. In this exercise we will see two examples of strictly many-sorted algebraic categories, i.e. algebraic categories which aren't single-sorted.

(a) (2 points) Prove that the category $\text{Set} \times \text{Set}$ (where morphisms are pairs of functions) is not single-sorted.

(b) (3 points) A category is called *trapped* if it contains two objects A, B such that there is no morphism $A \to B$. Let \mathcal{C} be a small trapped category. Show that there exist a non-trivial splitting C_1, C_2 of objects of \mathcal{C} , such that for each pair of objects $c \in C_1, c' \in C_2$, there is no morphism $c \to c'$.

(c) (5 points) Let C again be a small trapped category, and let A be an algebraic category where the initial and terminal objects are not the same. Prove that the category [C, A] is a strictly-multisorted algebraic category.