
TYPE THEORY HW 1

The simply typed lambda calculus was preceded by the untyped lambda calculus.
There are no types, only terms (or you can think that there is only one type that
everything belongs to, never mentioned explicitly, and call the untyped lambda
calculus the unityped lambda calculus).

The terms consist of the following:

(1) variables x1, ..., xn,
(2) a term st for every pair of terms s and t,
(3) a term λxi.t for every variable xi and term t.

with equations:

(1) (λxi.t)s = t[s/xi]
(2) λxi.(txi) = t (when xi does not appear in t).

Turing’s fixed point combinator in the untyped lambda calculus is defined to be:

Θ := (λxy.y(xxy))(λxy.y(xxy))

We’re using two conventions: that lambda terms associate to the left so that abc
stands for (ab)c, and that λxy. stands for λx.λy. .

Exercise 1. What does it mean to be a fixed point of a term in this calculus?
Show that Θt is a fixed point of t.

Exercise 2. Church encoded natural numbers (which here start at 0) in the un-
typed lambda calculus by representing n as the term that takes any term to its
n-fold composition, so that, for example, 2 f is what we would denote by f ◦ f in
usual mathematics. Write down the explicit formula for this.

Exercise 3. Encode multiplication in the untyped lambda calculus. That is,
define a term mult such that multm n = mn. Check that mult1n = n for all natural
numbers n.

Exercise 4. Suppose we have the following functions already encoded in the un-
typed lambda calculus (and if you have time, think about how you would define
them):

• ifzero then else which has the property that ifzero then else 0fg = f and
ifzero then else nfg = g whenever n 6= 0,
• succ which has the property that succ n = n+ 1,
• pred which has the property that pred 0 = 0 and pred n = n− 1 whenever
n 6= 0.

You can recursively encode addition using the following idea. You want addition
to have the following property:

add m n = ifzero then else n m (succ(add m (pred n)).
1



2 TYPE THEORY HW 1

Use Turing’s fixed point combinator to turn this into a definition of add.

Exercise 5. In the simply typed lambda calculus, we can ask whether a type
T has a fixed point combinator acting on terms of T =⇒ T . Let B denote the
type defined by the following rules.

0 : B 1 : B

T type Γ ` t0 : T Γ ` t1 : T

Γ, b : B ` j(t0,t1)(b) : T

T type Γ ` t0 : T Γ ` t1 : T

Γ ` j(t0,t1)(0) = t0 : T

T type Γ ` t0 : T Γ ` t1 : T

Γ ` j(t0,t1)(1) = t1 : T

Intuitively, this just means that there are two terms 0, 1 : B, and that given two
terms t0, t1 : T , we can always form a sort of function j(t0,t1) from B to T such that
j(t0,t1)(0) is the original t0 that we started with and j(t0,t1)(1) is the original t1 that
we started with.

Prove or disprove that B has a fixed point combinator.

Exercise 6. Given types R,S, T in the simply typed lambda calculus with =⇒ -
types, construct a term of the type

(R =⇒ (S =⇒ T )) =⇒ (S =⇒ (R =⇒ T )).

Exercise 7. Given types S, T in the simply typed lambda calculus with =⇒ - and
∧-types, construct a term of the type

S =⇒ (T =⇒ (S ∧ T )).


